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Overview
In this work, the comparison of random variables by means of a generated

probabilistic relation is the central theme. The comparison scheme that will be
used throughout this work will be introduced in Chapter 3 and essential to this
scheme is the probability that one random variable takes a greater value than
the other random variable. Put in game-theoretic context (when the random
variables are associated to players), this probability can also be defined as the
probability that one player wins from the other. The random variables are
therefore compared from a game-theoretic perspective. Even more, it is very
natural to transform the elements of the probabilistic relation obtained by using
this comparison scheme into the elements of a payoff matrix, to which can be
associated the games that will be discussed in Chapters 5 and 7.

In Chapter 1, basic concepts are introduced that will be needed in the subse-
quent chapters. In the first section, the relational concepts and related subjects
that will be encountered in this work are introduced. The second section intro-
duces distribution functions, states their connection to copulas and provides
an important note on random vectors. The third section then introduces the
game-theoretical notions that will be needed in Chapters 5 and 7. In the last
section of the first chapter, some basic notions from partition theory that will
be of use in Chapters 5, 7 and 8, are introduced.

Chapter 2 introduces the framework of cycle-transitivity, which is ideally
suited for describing and comparing forms of transitivity. As many proba-
bilistic relations will be encountered throughout this work, including relations
that are not necessarily transitive in the strict sense (such as dice-transitive
relations), a means to represent these relations in a uniform way is needed.
The framework of cycle-transitivity is ideal for this because the transitivitiy
of diverse types of probabilistic relations can be represented in this model,
including non-transitive relations. Cycle-transitivity is a way of describing a
3-dimensional probabilistic relation by means of the cyclic evaluation of the
weights of the corresponding weighted graph and it will be omnipresent in
this work. In the first two sections, this framework is introduced. Sections
three and four then consider the representation in cycle-transitivity notation of
the two best-known types of transitivity, namely fuzzy transitivity and stochas-
tic transitivity. In the course of the discussion, new types of transitivity, such
as partial g-stochastic transitivity and isostochastic transitivity, will be defined.
The last section then briefly discusses an alternative representation of proba-
bilistic relations by using so-called symmetric payoff relations.

In Chapter 3, the discrete dice model is introduced and its characteristic
transitivity, called dice-transitivity, is determined. This model can be used to
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pairwisely compare lists of integers and these lists can be regarded as fair dice
with each integer from the list written on a face of the dice. This model will be
used in Chapter 5 as the model in which an interesting class of games, called
(n,σ) dice games, is defined. It is also the basis of the general comparison
scheme for random variables that will be investigated in Chapters 4 and 6.
The first two sections introduce the dice model while the third section unfolds
the importance of a so-called standard collection of lists. In the fourth section
dice-transitivity is proven to be the characteristic transitivity generated by a
dice model. Section 5 then answers a natural question concerning the nature
of dice-transitivity and its connection to the probabilistic sum. Furthermore,
it is proven that any 3-dimensional dice-transitive relation with rational ele-
ments can be generated by a 3-dimensional dice model consisting of at most
seven so-called blocks, which implies that the dice model used to generate
a given 3-dimensional dice-transitive relation can be chosen to have a much
simpler structure than that of a general dice model. The transitivity of higher-
dimensional dice models is investigated in the sixth section. It is proven that
not all 4-dimensional dice-transitive relations with rational elements can be
generated by 4-dimensional dice models, implying that dice-transitivity does
not remain the characteristic transitivity of higher-dimensional dice models.
Despite the undertaking of various attempts to find out the characteristic tran-
sitivity of 4-dimensional dice models, we were unable to pin-point it. It will
be shown, however, that all 4-dimensional TM-transitive probabilistic relations
with rational elements can be generated by a 4-dimensional dice model.

In Chapter 4, the method introduced in the previous chapter is generalized
to obtain a mathematical tool to pairwisely compare random variables. This
new method of comparing independent random variables provides a graded
alternative to the concept of stochastic dominance, which is very popular in
the field of decision making, e.g. in economical applications. As this work is
primarily mathematical, we will not go into further detail about these appli-
cations and merely refer to the cited references. The new comparison method
that is introduced in this chapter provides a promising alternative to the often
hard conditions for stochastic dominance. The first section generalizes the dice
model. Depending on whether discrete or continuous random variables are
compared, these models are called generalized discrete dice models or general-
ized continuous dice models. These models all generate probabilistic relations
and when comparing independent random variables these relations are all at
least dice-transitive. The need to pairwisely compare random variables occurs
frequently in the field of decision making. In Chapter 4, the emphasis is laid on
the comparison of random variables by considering them to be independent.
Using a copula differing from the TP-copula to pairwisely bind the random
variables is postponed to Chapter 6. In the second section of Chapter 4 it is
proven that the characteristic transitivity of the generalized dice models with
independent random variables remains dice-transitivity. The remainder of the
chapter then considers more specific families of random variables. An empha-
sis is laid on the types of cycle-transitivity of the relations that can be generated
by these models. New types of transitivity and interesting connections to the
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field of copulas are laid bare. The third section discusses the general class of
dice models consisiting of independent random variables for which the cumu-
lative distribution functions are arbitrary translations of the same c.d.f. Sec-
tion 4 then considers various one-parameter families of random variables and
multiple types of transitivity, including multiplicative transitivity and specific
types of isostochastic transitivity, will be encountered in that section. Section 5
considers dice models consisting of normally distributed independent random
variables where both the expected value and variance are left as parameters. It
is shown that moderate stochastic transitivity is the characteristic transitivity of
such 3-dimensional models. In the final section dice models consisting of uni-
formly distributed independent random variables with overlapping support
are considered and the characteristic transitivity of such 3-dimensional models
is determined, which will turn out to be a type of g-stochastic transitivity.

Chapter 5 is devoted to obtaining the optimal strategies of games that are
closely connected to the dice model that was introduced in Chapter 3. The
games are symmetric matrix games that are played between two persons who
have a collection of dice with a fixed number of faces and with strictly positive
integers written on the faces summing up to a fixed number to their disposi-
tion. The games considered in Chapter 7 will be closely related to those con-
sidered in Chapter 5. In their statistical interpretation, the difference between
the considered games in both chapters will be the copula that is used to de-
fine the payoff function. Chapter 5 considers the game variant in which the
TP-copula is used. Finding the optimal strategies for this game variant is there-
fore closely related to the comparison of independent uniformly distributed
random variables. The first three sections of Chapter 5 are concerned with giv-
ing a full description of the considered game variant. Section 4 then bundles
the answers to the following questions concerning the nature of the optimal
strategies: which (n,σ) dice games contain optimal strategies, how do the op-
timal strategies look and how many are they ? Section 5 then proves the results
stated in the preceding section.

In Chapter 6, the method to pairwisely compare random variables, intro-
duced in Chapter 4, is considered when the random variables are compared
using a copula different from the TP-copula. An emphasis is laid on the two
extreme copulas. The first section introduces an alternative method to obtain
the probabilistic relation generated by a discrete dice model using the so-called
diagonal formula. Moreover, an equivalent representation using ordered lists
is obtained for dice models consisting of discrete random variables pairwisely
coupled by one of the two extreme copulas. This representation forms the link
to the games considered in Chapter 7 and this ordered list representation is also
used in the second section to determine the characteristic transitivity for these
models. It is proven that TL-transitivity (resp. partial min-stochastic transitiv-
ity) is the characteristic transitivity of 3-dimensional dice models consisting of
discrete random variables that are, for comparison reasons, pairwisely coupled
by the TM-copula (resp. TL-copula). It is also proven that for neither type of the
considered dice models, the specific transitivity is maintained when consider-
ing higher-dimensional models. The third section then considers continuous
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dice models in which one of the extreme copulas is used for comparing the ran-
dom variables. For both types of models, an interesting way of determining the
probabilistic relation is obtained using the graphs of the marginal cumulative
distribution functions corresponding to the considered random variables.

Chapter 7 considers two game variants that have, apart from the used cop-
ula, the same definition as the game variant considered in Chapter 5. The first
section gives a brief overview of the three game variants that are encountered
in this work. The two subsequent sections then discuss the game variant in
which the TM-copula is used. In the second section, the results about the op-
timal strategies are bundled and they are then proven in the third section.
Finally, sections 4 and 5 discuss the game variant in which the TL-copula is
used. The first of these sections again bundles the results, while in the last
section these results are proven. It turns out that, although the definitions of
the game variants only differ by the used copula, the characterization of the
optimal strategies is completely different for each variant.

In Chapter 8, standard n-duplets and n-triplets, which are certain collec-
tions of mutually disjoint sets of strictly positive integers, are partitioned using
their so-called street number with the aim of determining how many such col-
lections have a given street number. Section 1 introduces the street number
and shows its connection to the payoff matrix of the games defined in Chap-
ter 5. The second section then determines, for a given street number, how many
n-duplets have this street number. It turns out that certain concepts from parti-
tion theory are needed to solve this problem. The third section then introduces
the so-called dual partition set, which leads to an interesting method to con-
struct “rectangular triangles” by means of rectangles. Section 4 then briefly
considers the street number of n-triplets. It is indicated that it becomes very
difficult to give general results concerning the number of n-triplets having a
given street number.
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1.1. Relational concepts 1

1.1 Relational concepts
1.1.1 Probabilistic and fuzzy relations
In this work probabilistic relations, often also called reciprocal or ipsodual re-
lations, play a central role. Probabilistic relations serve as a popular represen-
tation of various relational preference models [15, 38, 73].

Definition – 1.1.1: A probabilistic relation Q on a set of alternatives A is an
A2 → [0, 1] mapping such that for all a, b it holds that

Q(a, b) + Q(b, a) = 1 .

If A is finite with cardinality m, then Q is called an m-dimensional probabilistic
relation.

The number Q(a, b) can, for instance, express the degree of preference of
alternative a over alternative b. When a crisp model is used, a subject is con-
fronted with 2 alternatives A and B and is asked which one is preferred. There
are 3 possible answers: “A is preferred to B,” “B is preferred A” or “A and
B are equally preferred (indifference).” Throughout this work, we will never
consider probabilistic relations in which incomparability can occur. In a prob-
abilistic model a subject or subjects is or are asked multiple times which one is
preferred. The proportion of answers in which A is preferred with respect to
all – say n – answers may be treated as the degree to which A is preferred to B:

P(A, B) =
#{A is preferred to B}

n .

As indifference is allowed, the relation P(A, B) is not necessarily a probabilis-
tic relation. However, a probabilistic relation can easily and intuitively be ob-
tained:

Q(A, B) = P(A, B) +
1
2 I(A, B) ,

where
I(A, B) =

#{A and B are equally preferred}
n .

It is easily verified that Q(A, B) is a probabilistic relation. Note that a subject
need not necessarily be asked her preference multiple times. For example, the
statement “I prefer apples to bananas” can be taken to imply that, given the
choice, I will select apples more often than I select bananas, but occasionally I
may select bananas. An estimate of the size of my preference could come from
observing such choices and by summarizing them as a ratio, a proportion, or a
probability [72].

We can also use a fuzzy model of preferences to obtain a probabilistic re-
lation by using a fuzzy preference relation R. For any 2 alternatives A and
B it must then hold that R(A, B) + R(B, A) = 1, and in this model, the sub-
ject is asked to what extent alternative A is preferred to alternative B. The
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2 Chapter 1. Introduction

answer is then a number, say R(A, B), located in the unit interval [0, 1] and
it expresses the subjective judgment of degree in which A is preferred to B.
When R(A, B) = 0, B is completely preferred to A, while R(A, B) = 1 indicates
that A is completely preferred to B. On the other hand, when R(A, B) = 1/2,
A and B are equally preferred. When R(A, B) ∈ ]1/2, 1[, the value indicates
a partial (fuzzy) degree of preference of A over B. Note that the property
R(A, B) + R(B, A) = 1 is in general not always required for a fuzzy prefer-
ence relation, but in this work only fuzzy preference relations for which this
quite natural property holds will be encountered. Finally, note that fuzzy pref-
erence relations are a subclass of the more general type of relations called fuzzy
relations. A fuzzy relation R on A is an A2 → [0, 1] mapping that expresses the
degree of relationship between elements of A: R(a, b) = 0 means a and b are
not related at all, R(a, b) = 1 expresses full relationship, while R(a, b) ∈ ]0, 1[
indicates a partial degree of relationship only.

Of course, specific probabilistic relations can also be defined by theoretical
models instead of being directly obtained from questioning a subject. In this
work we will concentrate on such theoretical models. For such models, it is
often interesting to study which kind of transitive relations can be generated
by them. This gives an idea of how restrictive the model is, which probabilistic
relations can be modelled by them, and it can also show connections with other
models. Transitivity properties are described using specific classes of aggrega-
tion operators, which we will now introduce.

1.1.2 Aggregation operators
The number of well-known types of operators that will be used in this work is
quite limited. However, transitivity will play a crucial role and it is therefore
not surprising that we will need the concept of the so-called triangular norm
(briefly t-norm), which is used for describing the transitivity of fuzzy relations.

Definition – 1.1.2: [70] A binary operation T : [0, 1]2 → [0, 1] is called a
t-norm if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(T(x, 1) = T(1, x) = x).

(ii) Monotonicity: T is increasing in each variable.

(iii) Commutativity: (∀(x, y) ∈ [0, 1]2)(T(x, y) = T(y, x)).

(iv) Associativity: (∀(x, y, z) ∈ [0, 1]3)
(T(x, T(y, z)) = T(T(x, y), z)).

A related concept is that of a t-conorm, which is a binary operation on [0, 1]
satisfying the above conditions (ii)–(iv) and which has as neutral element 0.
Also, to any t-norm T corresponds a dual t-conorm S defined by

S(x, y) = 1 − T(1 − x, 1 − y) . (1.1)
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For a recent monograph on t-norms and t-conorms, we refer to [56].
The smallest t-norm is the drastic product TD, which is right-continuous

only and is 0 everywhere up to the boundary condition TD(x, 1) = TD(1, x) =
x. The three main continuous t-norms are the minimum operator TM, the al-
gebraic product TP and the Łukasiewicz t-norm TL(x, y) = max(0, x + y − 1).
These three t-norms belong to one of the most important parametric t-norm
families, namely the Frank family (TF

λ )λ∈[0,∞] [41], which turns out to be also
a family of copulas (see below). For λ ∈ ]0, 1[∪]1, ∞[, the t-norm TF

λ is defined
by

TF
λ (x, y) = logλ

(

1 +
(λx − 1)(λy − 1)

λ − 1

)

. (1.2)

As limit cases, one obtains TM (λ → 0), TP (λ → 1) and TL (λ → ∞).
On the other hand, in this work a crucial role is played by random variables

and their interdependence. In this respect the concept of a copula will show up
in Chapter 6. Also, throughout Chapters 2 and 4, we will encounter numer-
ous examples of copulas in the context of describing the transitivity of specific
probabilistic relations.

Definition – 1.1.3: [2, 46, 64] A binary operation C : [0, 1]2 → [0, 1] is called
a quasi-copula if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(C(x, 1) = C(1, x) = x) .

(i’) Absorbing element 0: (∀x ∈ [0, 1])(C(x, 0) = C(0, x) = 0) .

(ii) Monotonicity: C is increasing in each variable.

(iii) 1-Lipschitz property: (∀(x1, x2, y1, y2) ∈ [0, 1]4)

(|C(x1, y1)− C(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|) .

If instead of (iii), C satisfies

(iv) Moderate growth (2-increasing): (∀(x1, x2, y1, y2) ∈ [0, 1]4)

((x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1)) ,

then it is called a copula.

Note that condition (i’) follows from conditions (i) and (ii). For a copula,
condition (ii) can be omitted as it follows from (iv) and (i’). As implied by
the terminology used, any copula is a quasi-copula, and therefore has the 1-
Lipschitz property; the opposite is not true.

It is well known that a copula is a t-norm if and only if it is associative;
conversely, a t-norm is a copula if and only if it is 1-Lipschitz. Finally, note that
for any quasi-copula C it holds that TL ≤ C ≤ TM.

The importance of copulas in this work is partially due to their relation with
bivariate cumulative distribution functions, which will be discussed in the next
section.
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4 Chapter 1. Introduction

1.1.3 Transitivity of fuzzy and probabilistic relations
When a person says she prefers apples to bananas and bananas to cherries,
this can be taken to imply that she will prefer apples to cherries, meaning the
preference relation is transitive. The size of the preference shown for apples
over cherries in relation to the other two preferences defines the degree of
transitivity found, and this determines how precisely one can predict untested
choices [72].

Whatever relational representation is employed for intensities of prefer-
ence, transitivity is always an interesting, often desirable property. In the con-
text of fuzzy preference modelling, for instance, T-transitivity of fuzzy (i.e.
[0, 1]-valued) relations is an indispensable notion [9, 14, 40, 68]. Some types
of transitivity have been devised specifically for probabilistic relations, such as
various types of stochastic transitivity [38, 63, 67].

Transitivity is a simple, yet powerful property of relations. A (binary) re-
lation R on a universe A (often referred to as the set of alternatives) is called
transitive if for any (a, b, c) ∈ A3 it holds that

((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R . (1.3)

Identifying a relation with its characteristic mapping, i.e. defining

R(a, b) =

{

1 , if (a, b) ∈ R ,
0 , if (a, b) /∈ R ,

transitivity can be stated equivalently as

(R(a, b) = 1 ∧ R(b, c) = 1) ⇒ R(a, c) = 1 .

However, many other equivalent formulations may be devised, such as

(R(a, b) ≥ α ∧ R(b, c) ≥ α) ⇒ R(a, c) ≥ α , (1.4)

for any α > 0. Alternatively, transitivity can also be expressed in the following
functional form:

min(R(a, b), R(b, c)) ≤ R(a, c) . (1.5)
Note that on {0, 1}2 the minimum operation is nothing else but the Boolean
conjunction.

Transitivity of relations is closely connected to consistency. Suppose, e.g.,
that the relation represents the property “is preferred to,” which is the rela-
tion that will be used throughout this work. It is then natural to demand that
if a is preferred over b and b is preferred over c, then a should be preferred
over c. In other words, it is natural to demand that the preference relation is
transitive. However, in this work we will encounter models for probabilistic
relations Q in which weak stochastic transitivity, given by (1.7), is not even
satisfied. In experimental tests also, it has been observed that when persons
are asked to pairwisely express their preference between the elements of some
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1.1. Relational concepts 5

set, it is not uncommon that the resulting preference relation is not transitive.
In other words, cycles may occur (as incomparability is not allowed in this
work). In this respect, the framework of cycle-transitivity, to be introduced in
the next chapter, is very convenient as, unlike most other frameworks, it does
not exclude the possibility of cyclic behavior. When confronted with a specific
probabilistic model, we are often interested in the types of transitivity the re-
lations generated by the model can possess. Probabilistic relations can then be
classified on the basis of their type of transitivity. For various relations, types of
transitivity have been defined that are a natural expansion of the many equiv-
alent definitions of transitivity on {0, 1}-valued relations.

1.1.3.1 Transitivity of fuzzy relations
In the setting of fuzzy set theory, in which relations need not be reciprocal,
formulation (1.5) has led to the popular notion of T-transitivity, where a t-norm
T is used as a generalization of the Boolean conjunction.

Definition – 1.1.4: Let T be a t-norm. A fuzzy relation R on A is called
T-transitive if for any (a, b, c) ∈ A3 it holds that

T(R(a, b), R(b, c)) ≤ R(a, c) . (1.6)

1.1.3.2 Transitivity of probabilistic relations
Transitivity properties for probabilistic relations rather have the logical flavor
of expression (1.4). There exist various kinds of stochastic transitivity for prob-
abilistic relations [15, 63]. For instance, a probabilistic relation Q on A is called
weakly stochastic transitive if for any (a, b, c) ∈ A3 the following implication,
which corresponds to the choice of α = 1/2 in (1.4), is satisfied:

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ 1/2 . (1.7)

Next, let R be a complete ({0, 1}-valued) relation on A, which means that
max(R(a, b), R(b, a)) = 1 for any a, b ∈ A. It then holds that R has an equiva-
lent {0, 1/2, 1}-valued probabilistic representation Q given by

Q(a, b) =











1 , if R(a, b) = 1 and R(b, a) = 0 ,
1/2 , if R(a, b) = R(b, a) = 1 ,
0 , if R(a, b) = 0 and R(b, a) = 1 .

Or in a more compact arithmetic form:

Q(a, b) =
1 + R(a, b)− R(b, a)

2 . (1.8)

One easily verifies that R is transitive if and only if its probabilistic representa-
tion Q satisfies, for any (a, b, c) ∈ A3:

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b), Q(b, c)) . (1.9)
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6 Chapter 1. Introduction

Similarly, a weakly complete fuzzy relation R, i.e. one satisfying

R(a, b) + R(b, a) ≥ 1 ,

for any a, b ∈ A, can be transformed into a (non-equivalent, yet interesting)
probabilistic representation Q = P + I/2, with P and I the (fuzzy) strict pref-
erence and indifference components of the fuzzy preference structure (P, I, J)
generated from R by means of TL [21, 79]:

P(a, b) = TM(R(a, b), 1− R(b, a)) = 1 − R(b, a) ,
I(a, b) = TL(R(a, b), R(b, a)) = R(a, b) + R(b, a)− 1 ,
J(a, b) = TL(1 − R(a, b), 1 − R(b, a)) = 0 .

Note that the corresponding expression for Q is formally the same as (1.8). For
an introduction to fuzzy preference structures, we refer to [20].

Note that T-transitivity for probabilistic relations is conceptually a rela-
tively strong condition compared to the stochastic transitivity variants, which
resemble (1.4) (see Subsection 2.4.1). For any triplet (Q(a, b), Q(b, c), Q(c, a))
there are possibly 6 conditions to be satisfied, augmented with the condition
of Q being a probabilistic relation. For the stochastic transitivity variants, the
number of conditions to be satisfied is in general smaller, as those conditions
have as prerequisite a condition similar to min(Q(a, b), Q(b, c)) ≥ 1/2 (e.g.
condition (1.7)).

We end by fixing a notation which will be used throughout this work. When
the set of alternatives A is countable, it is possible to label each alternative
a ∈ A with a different index i ∈ N. For two alternatives a, b ∈ A with respective
labels i, j ∈ N, we define qi j = Q(a, b). The probabilistic relation Q = {Q(a, b) |
a, b ∈ A} can then be written as Q = [qi j].

1.1.3.3 Separate evaluation versus joint evaluation
One way of making a preference relation between alternatives is by using a
utility function u(a) on the set of alternatives A. To each alternative, a pos-
itive value denoting its “utility” is assigned, the higher the value, the higher
the utility. Using this scheme, which is a separate evaluation, the importance
of an alternative is determined without explicitly comparing it to any other al-
ternative, which can be called a joint evaluation. These utilities can always be
rescaled to [0, 1]. From these utilities, a preference relation between the alter-
natives can be devised. Depending upon the nature of the given utility values,
one defines a different corresponding preference relation [77]. When the utili-
ties are given as a difference scale normalized on [0, 1], the following relation
is defined:

qi j =
1
2 (1 + u(ai)− u(a j)) . (1.10)

In this case, qi j − 1/2 can be seen as an intensity of preference of ai over a j. On
the other hand, when the utilities represent a positive ratio scale, the preference
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1.1. Relational concepts 7

relation is defined as
qi j =

u(ai)
u(ai) + u(a j)

. (1.11)

In this case, when q ji 6= 0, qi j/q ji indicates a ratio of the preference intensity
for ai to that for a j. The type of transitivity of the preference relations defined
by (1.10) is called additive transitivity and is defined by the condition

qi j + q jk + qki =
3
2 , (1.12)

those defined using (1.11) are characterized by multiplicative transitivity given
by

qi j
q ji

q jk
qk j

qki
qik

= 1 . (1.13)

On the other hand, for any probabilistic relations satisfying (1.12) (resp. (1.13)),
utility values u(ai) can be found so that (1.10) (resp. (1.11)) holds.

The question arises whether it is useful to question a subject about her pref-
erence over a number of alternatives by letting her pairwisely compare the
alternatives. If there are n alternatives, n(n − 1)/2 comparisons will need to
be made. Perhaps it is better to let her assign n utility values and transform
them into a preference relation as was done above? It turns out that these two
ways of obtaining a preference relation do not necessarily produce the same
preference relation. In the literature, studies are found in which the joint ver-
sus separate preference shifts are demonstrated [6, 50, 51]. In one such experi-
ment, MBA students were presented two jobs and were asked which job they
would accept [6]. The Money Job offered a salary of $85, 000 but a salary of
$95, 000 for other MBAs, the Fair Job offered a salary of $75, 000 for both the
questioned student and the other MBAs. In the separate evaluation, partici-
pants were presented with offers separately and asked on a case-by-case basis
whether they would accept each offer. In the joint evaluation, participants were
presented with a pair of hypothetical job offers and asked which offer(s), if any,
they would accept. In joint evaluation, participants tended to select the Money
Job while in separate evaluation the Fair Job was preferred. These so-called
preference reversals show that the disparity in compensation and the resulting
social comparison effects were more powerful when jobs were evaluated sep-
arately and the actual levels of compensation were more powerful when par-
ticipants could compare job offers. A few theories exist to explain these social
comparison effects [8]. A first explanation suggests that these reversals can be
explained by norm theory [66]. When individuals are presented with a single
item to evaluate, they struggle to make sense of it. To do so, they evoke a set of
available, internal referents for comparison and evaluate the item in the context
of these referents. When individuals are presented with more than one item to
evaluate, the alternatives themselves provide the comparison set for evalua-
tion. It is argued that, in joint evaluation, if there are differences in category
membership across the two alternatives, reconciling these category differences
will dominate assessment. A second explanation is the so-called want/should
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8 Chapter 1. Introduction

proposition [7]. It suggests a tension between what an individual wants to do
versus what the individual thinks she should do. The argument is that we of-
ten have an emotional desire to engage in behaviors that are inconsistent with
the behaviors in which we believe we should engage. Under separate evalua-
tion, lacking a counterbalancing alternative, we lean toward what we want to
do. In joint evaluation, on the contrary, we tend to select the most justifiable
option – the one that we think we should choose. A third explanation is given
by the evaluability hypothesis [49]. It suggests that these preference rever-
sals are driven by differences in the evaluability of attributes and argues that
when two options involve trading off between a hard-to-evaluate attribute and
an easy-to-evaluate attribute, the former one will have less impact in separate
evaluation than in joint evaluation. None of these explanations fully satisfy all
occurrences of preference reversal found in experiments, but it is very likely
that each one applies to at least some of the encountered occurrences. There-
fore, when one wants a subject to compare alternatives, to obtain better results
it is better to use a joint evaluation scheme. The best results would be obtained,
of course, when the subject has to compare all alternatives at once, but this is
sadly enough beyond the skill of any presently known mortal being when the
number of alternatives becomes large.

1.1.3.4 Cycles in probabilistic relations
In a probabilistic relation Q = [qi j], it holds that qi j = q ji, conceptually denot-
ing that alternatives i and j are equally preferred, if and only if qi j = 1/2. It
is therefore only natural to define that alternative i is preferred to alternative
j if and only if qi j > 1/2. The weakest condition a probabilistic relation has
to satisfy for being called transitive, is therefore the condition of weak stochas-
tic transitivity given by (1.7). Conceptually, this condition says that if k is not
preferred to j and j is not preferred to i, then k should not be preferred to i.
Note that this condition implies that if i and j are equally preferred (qi j = 1/2)
and j and k are equally preferred (q jk = 1/2), then i and k must be equally
preferred too (qik = 1/2), which is a condition that is very natural to demand.
Also note that weak stochastic transitivity excludes the possibility of i not be-
ing preferred over k (qik ≤ 1/2), while i is preferred to j but k is not preferred
to j (qi j > 1/2 ∧ qk j ≤ 1/2); again a very natural condition.

When determining the types of transitivity probabilistic relations generated
by a specific model can possess, we are really characterizing the probabilistic
relations between 3 alternatives i, j and k, given by (qi j, q jk, qki). We will en-
counter relations generated by models that are not necessarily even weakly
stochastic transitive, meaning that they can contain cycles and are therefore
not transitive according to the definition introduced above. However, if we
can characterize the probabilistic relations between the 3 alternatives, we will
still call this characterization the type of transitivity. For example, the condition
for dice-transitivity, given by

1 − min(qi j, q jk, qki) ≥ median(qi j, q jk, qki) max(qi j, q jk, qki) , ∀(i, j, k) ,
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1.1. Relational concepts 9

is a weaker condition than that of weak stochastic transitivity, but we will still
refer to the above condition as dice-transitivity (although the condition does
not impose transitivity as was defined above). Therefore, relations can be dice-
transitive, without being transitive.

When preference relations are obtained by questioning persons or study-
ing animal behavior, cycles are not really expected. However, recent studies
show that they occur relatively frequently. In [74], 44 students were asked to
give their preferences over 5 holiday destinations. It was found that only 79.6
percent of the students produced preference relations without cycles. A simi-
lar experiment, with similar results, was discussed in [43]. In that paper, it is
shown that the number of alternatives has a great impact on the transitivity
of the relations. When increasing the number of alternatives from 4 up to 7,
the percentage of students that produced preference relations without cycles
decreased from 92 to 50 percent. Possible explanations for these quite remark-
able results are not presented in the cited papers. Note that the percentage of
cycles compared to the total number of triplets is much lower. The maximum
number of cycles of length 3 that are possible when comparing n elements
without indifference or incomparability, is given by (n3 − n)/24 if n is odd and
(n3 − 4n)/24 if n is even [55]. When there is no indifference, the number c of
cycles of length 3 can be computed as

c =
1
6 n(n − 1)(n− 2)− 1

2
n
∑
i=1

si(si − 1) ,

where n is the number of alternatives and si is the outdegree of node i, when
the preference relation is represented as a digraph with n nodes and n(n− 1)/2
directed arcs [45].

Whether the cycles observed in the above experimental results have a log-
ical explanation or not, the occurrence of cycles is certainly a natural phe-
nomenon. They occur, for example, regularly in game theory. Probably the
simplest example being the classical rock-paper-scissors game: rock wins from
scissors, scissors wins from paper and paper wins from rock. The correspond-
ing preference relation is therefore cyclic (a is preferred to b if a wins from b).

We end by noting that, when obtaining preference relations from individu-
als, one must be careful not to generalize too much. For example, one must be
cautious for preference reversals, which occur when the ranking of two items
depends systematically on the method used to elicit it [12]. The classic cases of
preference reversal are related to decisions involving pairs of simple monetary
gambles. In each of these pairs, one bet (the ‘P-bet’) offers a relatively large
chance of a modest prize, while the other (the ‘$-bet’) offers a smaller chance
of a larger prize. In a typical preference reversal experiment, a given subject
makes a straight choice between the two bets and also states a monetary valua-
tion for each of them. The classic finding is a puzzling tendency for subjects to
choose the P-bet over the $-bet in the choice task but to place a strictly higher
monetary value on the $-bet. Consider for example the following experiment
to illustrate this phenomenon [47]: individuals under suitable laboratory con-
ditions are asked if they prefer lottery A to lottery B. In lottery A a random
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10 Chapter 1. Introduction

dart is thrown to the interior of a circle. If it hits a straight line drawn from the
center of the circle to the circumference, the subject is paid $0 and if it hits any-
where else, the subject is paid $4. There is a very high probability of winning,
so this lottery is called the P-bet. If lottery B is chosen, a random dart is thrown
to the interior of the circle and the subject receives either $16 or $0 depending
upon where the dart hits (see Figure 1.1). Psychologists have observed that a
large proportion of people will indicate a preference for lottery A but place a
higher value on lottery B. The preference measured one way is the reverse of
the preference measured another and seemingly theoretically compatible way.

In a final note, we would like to give an experimental example that shows
the existence of situations in which it is mathematically clear which alternative
should be preferred, but in which many people still prefer the other alternative.
Consider for example the concept of ratio bias [1]: when judging the probabil-
ity of a low probability event, many people judge it as less likely when it is
expressed as a ratio of small numbers (e.g. 1 : 10) than of large numbers (e.g.
10 : 100). Imagine for example two bags (A and B) with red and white balls.
Bag A contains 10 balls, 1 of which is red, and bag B contains 100 balls, 10
of which are red. The ratio of red balls is therefore the same for both bags.
Suppose participants to the experiment are offered a certain reward if when
extracting at random a ball frome one of the bags, it turns out to be red. Most
of the participants usually choose bag B because, as they correctly assert, it
contains more red balls. This ratio bias is even present in situations where
bag B offers a smaller probability of winning than bag A. In [34], the ratios
were 1 : 10 and 8 : 100 and almost half of the participants preferred the latter
option. The subjects reported that although they knew the odds were against
them, they felt they had a better chance when there were more red beans (beans
were used instead of balls). In this work, however, we never deal directly with
experimental values of preference relations obtained by individuals and such
surprising unlogical results will therefore not be encountered.

$ 4

$ 0 $ 16

lottery A: P-bet lottery B: $-bet

$ 0

Figure 1.1: A psychological experiment.

1.2 Random variables and distribution functions
Most information contained in this section was taken from [64]. We begin by
recalling the definition of a distribution function and joint distribution func-
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tion.

Definition – 1.2.1: A distribution function is a function F with domain R

such that

1. F is nondecreasing,

2. F(−∞) = 0 and F(+∞) = 1.

A joint distribution function is a function H with domain R
2 such that

1. H is 2-increasing (see Definition 1.1.3),

2. H(x,−∞) = H(−∞, y) = 0, and H(+∞, +∞) = 1.

Note that the above definition does not mention random variables. A dis-
tribution function of the random variable (r.v.) X is the function F such that
for all x ∈ R, F(x) = Prob{X ≤ x}, where Prob{X ≤ x} is the probability
that the r.v. X takes a value less than or equal to x. Distribution functions of
r.v. can be right-continuous, left-continuous or both. However, in practice they
are usually assumed to be at least right-continuous. A r.v. is continuous if its
distribution function is continuous. Sklar’s Theorem gives the connection be-
tween copulas, introduced in Definition 1.1.3, and joint distribution functions
of r.v. [69, 71].

Theorem – 1.2.2: Let X1 and X2 be random variables with distribution func-
tions FX1 and FX2 , respectively, and joint distribution function FX1 ,X2(x1, x2).
Then there exists a copula C such that for all x1, x2 ∈ R

FX1,X2(x1, x2) = C(FX1(x1), FX2(x2)) . (1.14)

If FX1 and FX2 are continuous, then C is unique; otherwise, C is uniquely de-
termined on RanFX1 × RanFX2 . Conversely, if C is a copula and FX1 and FX2
are distribution functions, then the function FX1 ,X2 defined by (1.14) is a joint
distribution function with margins FX1 and FX2 .

When the r.v. X1 and X2 are coupled by the TP-copula, i.e. when it holds
that FX1 ,X2(x1, x2) = FX1(x1)FX2(x2), they are independent. As was already
mentioned, any copula C is located between the TL-copula and the TM-copula.
Note that in the theory of copulas the notation W (resp. M) is used for TL (resp.
TM) and this bound is called the Fréchet-Hoeffding lower bound (resp. Fréchet-
Hoeffding upper bound). In this work, we will maintain the triangular norm
notations TL and TM.

A copula C induces a probability measure on [0, 1]2 via VC([0, u]× [0, v]) =
C(u, v), with u, v ∈ [0, 1] (the so-called C-measure). C-measures are often
called doubly stochastic measures, since for any measurable subset S of [0, 1],
VC(S× [0, 1]) = VC([0, 1]× S) = λ(S), where λ denotes an ordinary Lebesgue
measure on [0, 1]. For any copula C, let

C(u, v) = AC(u, v) + SC(u, v),
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12 Chapter 1. Introduction

where

AC(u, v) =
∫ u

0

∫ v

0

∂2

∂s∂t C(s, t)dtds and SC(u, v) = C(u, v)− AC(u, v) .

If C ≡ AC on [0, 1]2 — that is, if considered as a joint distribution function,
C has a joint density given by ∂2C(u, v)/∂u∂v — then C is absolutely contin-
uous, whereas if C ≡ SC on [0, 1]2 — that is, if ∂2C(u, v)/∂u∂v = 0 almost
everywhere in [0, 1]2 — then C is singular. It now holds that the TP-copula is
absolutely continuous, while the extreme copulas TL and TM are singular.

Chapters 4 and 6 of this work are concerned with comparing collections of
m random variables. In these chapters, random variables will be pairwisely
compared, where no restrictions are laid upon the 2-copulas used to couple
each pair of r.v. It is therefore not required that the set of m random variables
forms an m-dimensional random vector, or in other words, the 2-copulas bind-
ing the pairs of r.v. need not be compatible. On the contrary, the set of 3 r.v.
which are all pairwisely coupled by TL will be investigated in Chapter 6, while
no 3-dimensional random vector exists for which all 2-dimensional marginal
distributions are coupled by TL.

For a thorough introduction on copulas we refer to [64], and for a broader
view on multivariate models we refer to [52].

1.3 Game-theoretic concepts
Chapters 5 and 7 deal with characterizing the optimal strategies in three game
variants and we therefore introduce the needed game-theoretical concepts in
this section. The games that will be discussed are so-called non-cooperative
games. In these games the goal of each participant (player) is to achieve the
largest possible individual profit (payoff). The process of the game consists of
each one of the players choosing a certain strategy si ∈ Si. Thus as a result of
each “round” of the game, a system of strategies (s1, . . . , sn) = s is put together.
This system is called a situation.

A situation s is admissible for a player if by replacing her present strategy
in this situation with some other strategy, the player is unable to increase her
payoff. A situation s, which is admissible for all the players is called an equilib-
rium situation (also called Nash equilibrium). An equilibrium strategy of a player
in a non-cooperative game is a strategy that appears in at least one equilibrium
situation of the game.

An antagonistic game is a game with two players only and the values of the
payoff function for these players in each situation are the same in absolute
value but of the opposite sign: a1

i j = −a2
i j, with a1

i j, a2
i j the payoff functions of

the respective players when player 1 chooses strategy i and player 2 chooses
strategy j. Antagonistic games in which each player possesses a finite number
of strategies are called matrix games.

An equilibrium situation for the particular case of an antagonistic game
is called a saddle point and the equilibrium strategies of the players are then
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Figure 1.2: Payoff matrix for the (6, 12)-game.

called their optimal strategies. It is noteworthy to mention the following two
properties: firstly, the value of the payoff function in each saddle point is the
same, and secondly, if (x1, y1) and (x2, y2) are two different saddle points, then
so are (x1, y2) and (x2, y1).

A matrix game is completely determined by its payoff matrix, which is de-
fined by the matrix A = [a1

i j]. An example of a payoff matrix is given in Fig-
ure 1.2. As the value in the payoff matrix of a matrix game is the same for each
saddle point, all equilibrium strategies are equivalent for the players, hence the
term optimal strategy. A matrix game with a payoff matrix A = [a1

i j] for which
a1

i j = −a1
ji, is called a symmetric game. The value in a saddle point of the payoff

matrix of a symmetric game equals zero. This means that in a symmetric game,
if both players are infinitely smart, the payoff of both players will be zero and
they therefore neither win nor lose.

For a player to maximize her payoff, she needs to choose an optimal strat-
egy, if there is one. If she chooses this strategy, she is assured that her payoff
is greater or equal to 0, no matter which strategy the other player chooses. If
on the other hand, she doesn’t choose an optimal strategy, but the other player
does, she is assured that her payoff is less or equal to 0. It is therefore best
to choose an optimal strategy. In the payoff matrix of Figure 1.2, which cor-
responds to the (6, 12)-game (see Chapter 5), the saddle points have been en-
circled. As can be deduced from this matrix, there are 4 optimal strategies and
therefore 16 saddle points. It can be verified that for each row containing a sad-
dle point the payoffs are greater or equal to 0 and for each column containing a
saddle point they are less or equal to zero. For any situation that isn’t a saddle
point there can either be found a situation on the same row that has a smaller
payoff, or a situation in the same column that has a bigger payoff.

If there is no saddle point, it is natural that the players should seek in these
cases additional strategic opportunities in order to assure for themselves the
largest possible profit. It turns out that it is desirable that they choose their
strategies for this purpose randomly, in a well-chosen way. We then speak
of a mixed strategy instead of a pure strategy and of equilibrium situations in
mixed strategies. It can be shown that every matrix game has at least one equi-
librium situation in mixed strategies. These can usually be obtained numeri-
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cally by using linear programming. The payoff in an equilibrium situation in
mixed strategies is, for a symmetric game, also given by 0. Our attempts to
find closed expressions for the equilibrium situations in mixed strategies for
the three game variants have failed, but we did obtain the closed expressions
for the optimal strategies, if there are any. Note that, when there are multiple
optimal strategies, there are infinitely many equilibrium situations in mixed
strategies: the probabilities can be distributed over all optimal strategies. In
the remainder of this work, mixed strategies will not be encountered again.

For further reading on game theory, we refer to [81, 82] and the seminal
work by von Neumann and Morgenstern [80].

1.4 The theory of partitions – basic concepts
Some parts of this work use some basic notions from partition theory. To that
extent, we briefly introduce the concepts that are applicable, starting with the
definition of a partition itself.

Definition – 1.4.1: A partition of a positive integer σ is a finite nondecreas-
ing sequence of positive integers (i1, i2, . . . , in) such that ∑ j i j = σ . The i j are
called the parts of the partition.

Note that in partition theory the parts of a partition are usually ordered
nonincreasingly, but for the purpose of this work it was decided to order them
nondecreasingly. In this work, we are mainly concerned about a specific type
of partition, called an (n,σ) partition.

Definition – 1.4.2: An (n,σ) partition is a nondecreasingly ordered list
(i1, i2, . . . , in) of n strictly positive integers summing up to σ (∑ j i j = σ , i j ∈
N0).

Sometimes it is useful to use a notation that makes explicit the number of
times that a particular integer occurs as a part and this notation is called the
multiplicity representation.

Definition – 1.4.3: For a partition π = (i1, i2, . . . , in), the multiplicity repre-
sentation is given by (1t12t23t3 . . .), where exactly tl of the i j are equal to l.
When tl = 0, the term ltl can be omitted.

For the multiplicity representation (1t12t2 3t3 . . .) of a given (n,σ) partition
π it clearly holds that 0 ≤ ti ≤ n, ∑i>0 ti = n and ∑i>0 i ti = σ .

In partition theory everything usually comes down to a counting problem.
The most basic problem is, of course, counting the number of partitions of a
number.

Definition – 1.4.4: The partition function p(n) denotes the number of par-
titions of n.
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Obviously, p(n) = 0 when n is negative. By definition, we set p(0) = 1
with the observation that the empty sequence forms the only partition of zero.
However basic this counting problem might sound, it is in fact a very difficult
problem which has been solved only as late as in the beginning of the twentieth
century, by some of the greatest mathematical minds of their time. Conceptu-
ally, counting the number of partitions is very similar to counting the number
of compositions of an integer. Compositions are merely partitions in which
the order of the summands is considered. For example, there are seven parti-
tions of 5: (5), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1, 1). There are
16 compositions of 5: (5), (1, 4), (4, 1), (2, 3), (3, 2), (1, 1, 3), (1, 3, 1), (3, 1, 1),
(1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1), (1, 2, 2), (2, 1, 2) and
(2, 2, 1). The formula for the number of compositions of a positive integer n is
simply given by 2n−1. On the contrary, finding a closed form for the function
p(n) has proven to be a very difficult task, solvable only by people gifted with
great mathematical genius. This magnificent feat was accomplished mostly by
G. H. Hardy and S. Ramanujan while fully perfected by H. Rademacher. A
historical overview of this work is given in [3], however we do not want to
leave the reader without having seen the identity of the Hardy-Ramanujan-
Rademacher expansion of p(n):

p(n) =
1

π
√

2

∞

∑
k=1

Ak(n)
√

k









d
dx

sinh
(

π
k

√

2
3 (x − 1

24)

)

√

x − 1
24









x=n

,

where
Ak(n) = ∑

h mod k
d(h,k)=1

ωh,ke−2π inh/k

with ωh,k given by
ωh,k = exp(π is(h, k)) ,

where s(h, k) is the Dedekind sum:

s(h, k) =
k−1
∑
µ=1

(

µ

k −
⌊µ

k
⌋

− 1
2

)(hµ

k −
⌊hµ

k

⌋

− 1
2

)

.

It may please the reader to know that by having just read the above identity,
she has successfully read through the hardest to comprehend theorem stated
in this work, which isn’t merely because the proof has been excluded.

For the modest purposes of this work, we need to introduce two additional
concepts from partition theory. Sometimes it is better to graphically represent
partitions. Therefore, to each partition π is associated its graphical represen-
tation Gπ (also known as Ferrers graph), which formally is the set of points
with integral coordinates (i, j) in the plane such that if π = (i1, i2, . . . , in), then
(i, j) ∈ Gπ if and only if 0 ≥ i ≥ −n + 1, 0 ≤ j ≤ i|i|+1 − 1 [3]. As is so of-
ten the case, an example will set the mind: Figure 1.3 shows the Ferrers graph
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16 Chapter 1. Introduction

corresponding to the partition 2 + 3 + 4 + 4 + 7. Note that the (nondecreas-
ing) alternative way of representing the graph is obtained by putting the graph
from the figure upside down. In the counting problems encountered in this

Figure 1.3: A Ferrers graph.

work, the concept of restricted partitions will play the central role. Before in-
troducing these special types of partition problems, we need the concept of
infinite product generating functions.

Definition – 1.4.5: The generating function f (q) for the sequence a0, a1, a2,
a3, . . . is the power series f (q) = ∑n≥0 anqn.

The existence of a generating function for a given counting problem is of
great value, as the counting is then reduced from actually constructing all sat-
isfying cases to a simple mathematical expansion which can be done by any
good numerical software tool.

Definition – 1.4.6: The value p(N, M, n) denotes the number of partitions
of n into at most M parts, each ≤ N. These partitions are called restricted
partitions.

Clearly, p(N, M, n) = 0 when n > MN, while p(N, M, NM) = 1. Therefore
the generating function

G(N, M; q) = ∑
n≥0

p(N, M, n)qn

is a polynomial in q of degree NM. We can now end by stating the follow-
ing important theorem, which provides the generating function for restricted
partitions.

Theorem – 1.4.7: For M, N ≥ 0,

G(N, M; q) =
(1 − qN+M)(1 − qN+M−1) . . . (1 − qM+1)

(1 − qN)(1 − qN−1) . . . (1 − q)

=
(q)N+M

(q)N(q)M
. (1.15)

Thanks to the above theorem which provides the generating function for
p(N, M, n), if we can reformulate the counting problems we will encounter in
later chapters so that the number is a function of only p(N, M, n), we have the
full mathematical characterization of these values.
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The polynomials (1.15) are known as the Gaussian polynomials, defined by
[n

m

]

=

{

(q)n
(q)m(q)n−m

, if 0 ≤ m ≤ n ,
0 , otherwise .

Note that
[N + M

M

]

= G(N, M; q) .

All statements are true in some sense, false in some sense,
meaningless in some sense, true and false in some sense, true

and meaningless in some sense, false and meaningless in
some sense, and true and false and meaningless in some sense.

— PUBLIC SERVICE CLARIFICATION BY THE

SRI SYADASTI SCHOOL OF SPIRITUAL WISDOM, WILMETTE

I hate definitions.

— BENJAMIN DISRAELI

It is a mistake to think
you can solve any major problem

just with potatoes.

— DOUGLAS N. ADAMS
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Throughout this work, the concept of cycle-transitivity will pop up as being
ideally suited as a descriptive tool for probabilistic relations. Cycle-transitivity
is a very general framework that enables representing diverse already known
types of transitivity. It has also turned out to be ideally suited for describing
new types of transitivity that are encountered when comparing random vari-
ables, as will become clear in subsequent chapters. Finally, the use of upper
bound functions for describing the transitivity is a convenient way to show
relationships between different types of transitivity. In this chapter, we will
develop this general framework [16, 19, 17]. The key feature is the expression
of transitivity using a cyclic evaluation of the values of the probabilistic rela-
tion: triangles (i.e. any three points, corresponding to three alternatives) are
visited in a cyclic manner. An upper bound function acting upon the ordered
weights encountered provides an upper bound for the “sum minus 1” of these
weights. Commutative quasi-copulas allow to translate a general definition of
fuzzy transitivity (when applied to probabilistic relations) elegantly into the
framework of cycle-transitivity. Similarly, a general notion of stochastic transi-
tivity corresponds to a particular class of upper bound functions.

Comparison functions and probabilistic relations are a convenient tool for
expressing the result of the pairwise comparison of a set of alternatives [15] and
appear in various fields such as game theory [36], voting theory [44, 65] and
psychological studies on preference and discrimination in (individual or col-
lective) decision-making methods [35]. Probabilistic relations are particularly
popular in fuzzy set theory where they are used for representing intensities of
preference [11, 54, 78]. In group decision making, probabilistic relations rep-
resent collective preferences and are built from individual preferences, either
by aggregation methods [42] or consensus-reaching processes [54]. In social
choice theory, there is a vast literature on the study of choice rules [13, 53, 65]
(resp. choice correspondences [36, 58]) given preferences expressed in terms of
probabilistic relations (resp. comparison functions). The remaining chapters in
this work will all involve such probabilistic relations, which is why we lay an
emphasis on them in the present chapter.

Although T-transitivity has been devised for fuzzy relations, which aren’t
necessarily probabilistic relations, we begin Section 2.1 with a careful study
of TP-transitivity for probabilistic relations. Our observations will motivate
the introduction of the concept of cycle-transitivity. Particular attention will be
paid to so-called self-dual upper bound functions. In Section 2.3, we show how
fuzzy transitivity, and in particular T-transitivity, fits into the new framework.
Commutative quasi-copulas, and in particular members of the Frank t-norm
family, permit an elegant reformulation. In Section 2.4, we propose a broad def-
inition of stochastic transitivity, of which strong, moderate and weak stochastic
transitivity are well-known instances. It is shown under which conditions this
type of transitivity can be cast into the cycle-transitivity framework as well.
Also, the discussion of self-duality leads to remarkable results, attributing a
particular role to t-conorms. Finally, Section 2.5 briefly considers a different
definition of cycle-transitivity based on a so-called symmetric payoff relation
involving a simple transformation of the values of the probabilistic relation.
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20 Chapter 2. Cycle-transitivity

2.1 Preliminaries
2.1.1 Notations
Consider an arbitrary universe A. For a probabilistic relation Q on A, we write
qab := Q(a, b). For any (a, b, c) ∈ A3, let

αabc = min(qab, qbc, qca) ,
βabc = median(qab, qbc, qca) ,
γabc = max(qab, qbc, qca) .

(2.1)

Note that A need not be countable, which is why we use the indices abc instead
of i jk. It now obviously holds that

αabc ≤ βabc ≤ γabc , (2.2)

and also

αabc = αbca = αcab , βabc = βbca = βcab , γabc = γbca = γcab . (2.3)

On the other hand, the probabilistic nature of Q implies that

αcba = 1 − γabc , βcba = 1 −βabc , γcba = 1 −αabc . (2.4)

2.1.2 TP-transitivity
To point out a possible way of generalizing T-transitivity (for probabilistic re-
lations), we consider TP-transitivity for a probabilistic relation Q on A. For any
a, b, c ∈ A, there are six conditions to be satisfied, namely

qac qcb ≤ qab , qba qac ≤ qbc , qcb qba ≤ qca ,
qbc qca ≤ qba , qca qab ≤ qcb , qab qbc ≤ qac .

Since Q is reciprocal, these conditions can be expressed in terms of αabc, βabc
and γabc solely, as follows

(1 −βabc)(1− γabc) ≤ αabc , βabc γabc ≤ 1 −αabc ,
(1 −αabc)(1− γabc) ≤ βabc , αabc γabc ≤ 1 −βabc ,
(1 −αabc)(1 −βabc) ≤ γabc , αabc βabc ≤ 1 − γabc .

(2.5)

The three left-hand inequalities of (2.5) can be rewritten as

βabcγabc ≤ αabc + βabc + γabc − 1 ,
αabcγabc ≤ αabc + βabc + γabc − 1 ,
αabcβabc ≤ αabc + βabc + γabc − 1 .

From (2.2) it follows that αabc βabc ≤ αabc γabc ≤ βabc γabc. Therefore only the
first inequality should be withheld as a condition for TP-transitivity. Similarly,
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the three right-hand inequalities of (2.5) can be rewritten as

αabc + βabc + γabc − 1 ≤ 1 − (1 −βabc)(1 − γabc) ,
αabc + βabc + γabc − 1 ≤ 1 − (1 −αabc)(1− γabc) ,
αabc + βabc + γabc − 1 ≤ 1 − (1 −αabc)(1−βabc) .

From (2.2) it now follows that only the last inequality should be retained. The
six inequalities (2.5) are therefore equivalent to the double inequality

βabc γabc ≤ αabc + βabc + γabc − 1 ≤ 1 − (1 −αabc)(1 −βabc) . (2.6)

The way we arrived at this double inequality immediately shows that if it holds
for (a, b, c) ∈ A3, then it also holds for all permutations of (a, b, c). A direct
proof of this claim, however, provides us with some further insights. Let us
denote the upper and lower bounds in (2.6) as u(αabc, βabc) and l(βabc, γabc),
respectively. We observe the following type of duality:

l(βabc, γabc) = 1 − u(1 − γabc, 1 −βabc) . (2.7)

Suppose (2.6) holds for (a, b, c), then (2.4) and (2.7) lead to

αcba + βcba + γcba − 1 = 1 − (αabc + βabc + γabc − 1)

≥ 1 − u(αabc, βabc)

= 1 − u(1 − γcba, 1 −βcba) = l(βcba, γcba) .

Similarly, we obtain αcba + βcba + γcba − 1 ≤ u(αcba, βcba). Hence, (2.6) also
holds for (c, b, a).

2.2 The definition of cycle-transitivity
The simple formulation (2.6)–(2.7) of TP-transitivity for probabilistic relations
has been the source of inspiration for a new way of describing the transitivity
of probabilistic relations. Let us denote ∆ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z}
and consider a function U : ∆ → R, then, in analogy to (2.6), we could call a
probabilistic relation Q on A transitive w.r.t. U if for any a, b, c ∈ A it holds that

1 − U(1− γabc, 1 −βabc, 1−αabc)≤αabc + βabc + γabc − 1≤ U(αabc, βabc, γabc) .

In case of TP-transitivity, the corresponding function UP is given by

UP(α, β, γ) = 1 − (1 −α)(1−β) = α + β −αβ . (2.8)

The minimal requirement we will impose is that the probabilistic representa-
tion Q of any transitive complete relation R given in (1.8) satisfies any form of
cycle-transitivity. To that end, U should satisfy the following conditions:

U(0, 1/2, 1) ≥ 1/2 , U(1/2, 1/2, 1/2) ≥ 1/2 ,
U(0, 0, 1) ≥ 0 , U(0, 1, 1) ≥ 1 . (2.9)
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22 Chapter 2. Cycle-transitivity

These conditions are for instance satisfied for any U ≥ median. The choice
of requiring the above conditions does have an impact, however. These condi-
tions imply that the constant function UA(α, β, γ) = 1/2 is not an upper bound
function which implies that additive transitivity, defined in (1.12), cannot be
represented in the cycle-transitivity framework. This is, however, the only rel-
evant type of transitivity we have found that does not fit into the framework,
which makes additive transitivity quite unique.

To explain where the above four conditions come from, we first note that for
any transitive probabilistic relation given in (1.8) with three elements {a, b, c}
it holds that (αabc, βabc, γabc) is either (1/2, 1/2, 1/2), either (0, 1/2, 1), either
(0, 1, 1) or (0, 0, 1). Therefore the following inequalities must hold, which are
equivalent to (2.9).

L(1/2, 1/2, 1/2) ≤ 1/2 + 1/2 + 1/2 − 1 ≤ U(1/2, 1/2, 1/2) ,
L(0, 1/2, 1) ≤ 0 + 1/2 + 1 − 1 ≤ U(0, 1/2, 1) ,

L(0, 1, 1) ≤ 0 + 1 + 1 − 1 ≤ U(0, 1, 1) ,
L(0, 0, 1) ≤ 0 + 0 + 1 − 1 ≤ U(0, 0, 1) .

In a similar fashion, a requirement could be to insist that the only {0, 1/2, 1}-
valued probabilistic relations that are cycle-transitive w.r.t. U are the proba-
bilistic representations of transitive complete relations. For this requirement to
be satisfied, the following additional conditions would have to be fulfilled:

U(0, 0, 0) < −1 or U(1, 1, 1) < 2 ,
U(0, 0, 1/2) < −1/2 or U(1/2, 1, 1) < 3/2 ,

U(0, 1/2, 1/2) < 0 or U(1/2, 1/2, 1) < 1 .
(2.10)

The above strict inequalities are obtained in an analogous way as the inequali-
ties (2.9). As this requirement would seriously limit the generality of the frame-
work, it is not imposed. Dice-transitivity, which we will encounter in subse-
quent chapters, for instance, does not satisfy the above three conditions. A
final restriction made to the class of upper bounds is that for any such upper
bound the corresponding lower bound should not exceed it, in any point taken
from ∆.

Definition – 2.2.1: A function U : ∆ → R is called an upper bound function
if it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;

(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1− γ, 1 −β, 1 −α) ≥ 1 . (2.11)

The class of upper bound functions is denoted U .
Note that the definition of an upper bound function does not include any

monotonicity condition. The function L : ∆ → R defined by

L(α, β, γ) = 1 − U(1− γ, 1 −β, 1 −α) (2.12)
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is called the dual lower bound function of a given upper bound function U. In-
equality (2.11) then simply expresses that L ≤ U. Note that the conditions
U(0, 1/2, 1) ≥ 1/2 and U(1/2, 1/2, 1/2) ≥ 1/2 follow from (2.11) and are
therefore omitted in the above definition. One easily verifies that UP belongs
to U and, moreover, also satisfies (2.10).

Definition – 2.2.2: A probabilistic relation Q on A is called cycle-transitive
w.r.t. an upper bound function U ∈ U if for any (a, b, c) ∈ A3 it holds that

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (2.13)

where L is the dual lower bound function of U.

Using the above terminology, the results of Section 2.1 can be rephrased
as follows: a probabilistic relation Q is TP-transitive if and only if it is cycle-
transitive w.r.t. the upper bound function UP, defined in (2.8). In general, due
to the built-in duality, it holds that if (2.13) is true for some (a, b, c), then this is
also the case for any permutation of (a, b, c). In practice, it is therefore sufficient
to check (2.13) for a single permutation of any (a, b, c) ∈ A3. Alternatively, due
to the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any (a, b, c) ∈
A3 that aren’t cyclic permutations of one another, e.g. (a, b, c) and (c, b, a).

Proposition – 2.2.3: A probabilistic relation Q on A is cycle-transitive w.r.t.
an upper bound function U ∈ U if for any (a, b, c) ∈ A3 it holds that

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) . (2.14)

Proof:
We need to show that, given the inequality

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) ,

the inequalities

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1

and
αcba + βcba + γcba − 1 ≤ U(αcba, βcba, γcba) ,

are equivalent. As γcba = 1 −αabc, βcba = 1 − βabc and αcba = 1 − γabc, the
equivalence follows directly from the definition of the dual lower bound.

Note that the upper bound function U(α, β, γ) = 2 will often be used to
express that for the given values there is no restriction at all (indeed, α +
β + γ − 1 is always bounded from above by 2). For two upper bound func-
tions such that U1 ≤ U2, it clearly holds that cycle-transitivity w.r.t. U1 im-
plies cycle-transitivity w.r.t. U2. However, it is clear that U1 ≤ U2 is not
a necessary condition for the latter implication to hold. To give an example
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that we will encounter later on, cycle-transitivity w.r.t. the upper bound func-
tion U′

L(α, β, γ) = 1 implies cycle-transitivity w.r.t. the upper bound function
UL(α, β, γ) = min(α + β, 1), while 1 ≥ min(α + β, 1) and U ′

L 6= UL.
Two upper bound functions U1 and U2 will be called equivalent if for any

(α, β, γ) ∈ ∆ it holds that

α + β + γ − 1 ≤ U1(α, β, γ)

is equivalent to
α + β + γ − 1 ≤ U2(α, β, γ) .

Suppose, for instance, that the inequality α + β + γ − 1 ≤ U1(α, β, γ) can be
rewritten as

α ≤ h(β, γ) ,

then an equivalent upper bound function U2 is given by

U2(α, β, γ) = β + γ − 1 + h(β, γ) .

In this way, it is often possible to reduce an upper bound function in three
variables to an equivalent upper bound function in only two of the variables
α, β and γ. Another method of obtaining equivalent upper bound functions is
as follows. For any µ > 0, the inequality

α + β + γ − 1 ≤ U(α, β, γ)

is clearly equivalent to

α + β + γ − 1 ≤ U(α, β, γ)− (1 −µ)(α + β + γ − 1)

µ
.

Hence, cycle-transitivity w.r.t. the upper bound function U is equivalent to
cycle-transitivity w.r.t. Uµ defined by

Uµ(α, β, γ) =
U(α, β, γ)− (1 − µ)(α + β + γ − 1)

µ
. (2.15)

One easily verifies that if U ∈ U then Uµ ∈ U . Note that also the additional
conditions (2.10) are preserved, under the above transformation.

2.2.1 Self-dual upper bound functions
If it happens that in (2.11) the equality holds for all (α, β, γ) ∈ ∆, i.e.

U(α, β, γ) + U(1− γ, 1 −β, 1 −α) = 1 , (2.16)

then the upper bound function U is said to be self-dual, since in that case it
coincides with its dual lower bound function L. Consequently, then also (2.13)
and (2.14) can only hold with equality. Furthermore, it holds that U(0, 0, 1) = 0
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and U(0, 1, 1) = 1. Note that if U is self-dual, then also any upper bound
function Uµ defined in (2.15) is self-dual.

The simplest self-dual upper bound function is given by the median, i.e.
UM(α, β, γ) = β, and further on we will prove that this is precisely the up-
per bound function corresponding to TM-transitivity of probabilistic relations,
when it is reformulated in the framework of cycle-transitivity.

Another example of a self-dual upper bound function is the function UE
defined by

UE(α, β, γ) = αβ +αγ + βγ − 2αβγ . (2.17)
Cycle-transitivity w.r.t. UE of a probabilistic relation Q on A can also be ex-
pressed as

αabc + βabc + γabc − 1 = αabcβabc +αabcγabc + βabcγabc − 2αabcβabcγabc ,

or, equivalently, as:

αabcβabcγabc = (1 −αabc)(1 −βabc)(1 − γabc) .

It is then easy to see that cycle-transitivity w.r.t. UE is equivalent to the concept
of multiplicative transitivity, which was already defined in (1.13). Note that
the cycle-transitive version is more appropriate, although less intuitive, as it
avoids division by zero.

It is possible to characterize the subfamily of self-dual upper bound func-
tions that are polynomial functions. Indeed, introducing the new variables
α′ = α − 1/2, β′ = β − 1/2, γ′ = γ − 1/2, and the new function U ′ defined by

U′(α′, β′, γ′) = U(α′ + 1/2, β′ + 1/2, γ′ + 1/2)− 1/2 , (2.18)

the self-duality of U becomes equivalent to

U′(α′, β′, γ′) = −U′(−γ′ ,−β′,−α′) , (2.19)

which should hold for all −1/2 ≤ α′ ≤ β′ ≤ γ′ ≤ 1/2. We now give explicitly
the polynomial solutions of the latter functional equation.

Proposition – 2.2.4: All polynomial solutions of (2.19) are given by

U′(α′, β′, γ′) = ∑
(i, j,k)∈N3

ci jk(α
′γ′)iβ′ j

[

α′k + (−1) j+k+1γ′k
]

, (2.20)

where the ci jk are arbitrary reals. For the corresponding function U, derived
from (2.19), to be an upper bound function, U ′(−1/2, 1/2, 1/2) = 1/2 must
hold.

Proof:
Suppose we have a polynomial solution U ′(α′, β′, γ′) of (2.19). As it is a poly-
nomial function, we can always write the function in the following form:

U′(α′, β′, γ′) = ∑
l=(l1,l2,l3)∈N3

δl α
′l1β′l2γ′l3 , with δl ∈ R . (2.21)
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The condition (2.19) is equivalent to the following equality that must be satis-
fied for any l = (l1, l2, l3) ∈ N3 and corresponding l′ = (l3, l2, l1):

δl α
l1β′l2γ′l3 + δl′ α

′l3βl2γ′l1 = −
(

δl (−γ′)l1(−β′)l2(−α′)l3+

δl′ (−γ′)l3(−β′)l2(−α′)l1
)

.
(2.22)

When the sum l1 + l2 + l3 is odd, at least one of these conditions must be sat-
isfied: δl = δl′ or l1 = l3. This corresponds to k > 0 or k = 0 in (2.20), and the
corresponding term for the left-hand side of (2.22) in (2.20) is then given using
the values

i = min(l1, l3), j = l2, k = max(l1, l3)− i, ci jk =
δl + δl′

2 .

When l1 + l2 + l3 is even, it must hold that δl = −δl′ , and we use the values

i = min(l1, l3), j = l2, k = max(l1, l3)− i, ci jk = ±δl ,

where ci jk = δl when l1 ≥ l3 and ci jk = −δl when l3 > l1. All terms from (2.21)
can therefore be written in the form (2.20). Conversely, the functions U ′ de-
fined in (2.20) satisfy (2.19) and can of course be written using the form (2.21).
Therefore, when the equality (2.22) holds, the forms (2.20) and (2.21) produce
the same set of functions, namely the polynomials and infinite series defined
over ∆ and satisfying (2.19).

It still needs to be verified, however, that the functions U derived from U ′

using (2.18) and satisfying (2.20), also satisfy the conditions mentioned in Def-
inition 2.2.1. As U is self-dual, the conditions U(0, 1, 1) ≥ 1 and U(0, 0, 1) ≥ 1
can be combined into one condition: U(0, 1, 1) = 1, which is equivalent to
U′(−1/2, 1/2, 1/2) = 1/2.

As was already mentioned, (2.20) not only defines all self-dual polynomial
functions, but also all self-dual infinite series. Returning to the original vari-
ables, all self-dual upper bound polynomial functions (or infinite series) U are
given by

U(α, β, γ) = 1
2 +∑

(i, j,k)∈N3
ci jk(α − 1/2)i (β − 1/2) j (γ − 1/2)i×
[

(α − 1/2)k + (−1) j+k+1(γ − 1/2)k
]

, (2.23)

where the coefficients ci jk are restricted in order to ensure that U(0, 1, 1) = 1
(and, equivalently, U(0, 0, 1) = 0).

By setting c010 = 1/2 and all other ci jk to zero in (2.23), the self-dual upper
bound function UM is retrieved, while choosing c110 = −1, c010 = 1/4, c001 =
1/2 and all other ci jk = 0, leads to the self-dual upper bound function UE,
corresponding to multiplicative transitivity.
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2.3 Fuzzy transitivity as cycle-transitivity
2.3.1 Fuzzy transitivity
In this section, we reconsider the notion of T-transitivity. Instead of t-norms,
we consider the more general class of conjunctors.

Definition – 2.3.1: A binary operation f : [0, 1]2 → [0, 1] is called a conjunc-
tor if it has the following properties:

(i) Its restriction to {0, 1}2 coincides with the Boolean conjunction.

(ii) Monotonicity: f is increasing in each variable.

The following definition generalizes Definition 1.1.4.

Definition – 2.3.2: Let f be a conjunctor. A fuzzy relation R on A is called
f -transitive if for any (a, b, c) ∈ A3 it holds that

f (R(a, b), R(b, c)) ≤ R(a, c) . (2.24)

Typical examples of conjunctors are binary operations on [0, 1] that satisfy
(ii) and have 1 as neutral element, i.e. f (x, 1) = f (1, x) = x for any x ∈ [0, 1].
Such conjunctors are bounded from above by TM, i.e. f (x, y) ≤ min(x, y), and
have 0 as absorbing element, i.e. f (x, 0) = f (0, x) = 0, for any x ∈ [0, 1].

In this work, we are mainly interested in two particular classes of commu-
tative conjunctors with neutral element 1: the class of t-norms and the class of
(commutative) (quasi-)copulas, both defined in Section 1.1.2 and finding their
origin in the study of probabilistic metric spaces [70].

2.3.2 Fuzzy transitivity as cycle-transitivity
Although fuzzy transitivity was introduced for fuzzy relations, which are not
necessarily reciprocal, we will only consider those that are, as cycle-transitivity
has been designed specifically for these relations. A first immediate observa-
tion is the following proposition.

Proposition – 2.3.3: Let f be a commutative conjunctor such that f ≤ TM.
A probabilistic relation Q on A is f -transitive if and only if it is cycle-transitive
w.r.t. the upper bound function U f defined by

U f (α, β, γ) = min(α + β − f (α, β), β + γ − f (β, γ), γ +α − f (γ,α)) . (2.25)

Proof:
First of all, a simple verification shows that for any conjunctor f the property
f ≤ TM guarantees that the function U f defined in (2.25) belongs to U . Indeed,
as it then holds that f (0, x) = 0 we obtain U f (0, 0, 1) = min(0, 1, 1) = 0 and
U f (0, 1, 1) = min(1, 1, 1) = 1. It also directly follows that U f (α, β, γ)+ U f (1−
γ, 1 − β, 1 −α) = min(α + β − f (α, β), β + γ − f (β, γ), γ + α − f (γ,α)) +
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min(2−β−γ− f (1−γ, 1−β), 2−α−β− f (1−β, 1−α), 2−α−γ − f (1−
α, 1 − γ)) ≥ β + 1 −β = 1.

Consider a probabilistic relation Q on A and (a, b, c) ∈ A3. Assume e.g.
that qab = αabc, qbc = βabc and qca = γabc. The six inequalities of type (2.24),
guaranteeing f -transitivity, can be brought, by adding appropriate terms to
both sides of the inequalities, into the following form (also omitting the indices
abc):

f (1 −γ, 1 −β) + γ + β − 1 ≤ α + β + γ − 1 ,
f (1 −α, 1 − γ) +α + γ − 1 ≤ α + β + γ − 1 ,
f (1 −β, 1 −α) + β +α − 1 ≤ α + β + γ − 1 ,

α + β + γ − 1 ≤ − f (β, γ) + β + γ ,
α + β + γ − 1 ≤ − f (γ,α) + γ +α ,
α + β + γ − 1 ≤ − f (α, β) +α + β .

Similarly as for TP-transitivity, these six inequalities are equivalent to the dou-
ble inequality

L f (α, β, γ) ≤ α + β + γ − 1 ≤ U f (α, β, γ) ,

with U f given by (2.25) and L f the dual lower bound function defined by (2.12):
1−U f (1−γ, 1−β, 1−α) = max(α +β+ f (1−β, 1−α), β+γ + f (1−γ, 1−
β),α +γ + f (1−α, 1−γ))− 1 . Due to the commutativity of f , any other case,
such as qab = αabc, qbc = γabc and qca = βabc, leads to the same result.

Note that in general the additional conditions (2.10) are not satisfied by an
upper bound function of type (2.25). Due to the third condition from (2.10) this
is only the case when f (1/2, 1/2) > 0, a condition that is e.g. not fulfilled for
f = TL.

2.3.3 The case of commutative quasi-copulas and copulas
Proposition 2.3.3 does not sufficiently emphasize the relevance of the concept
of cycle-transitivity. It would be interesting to establish sufficient conditions
bringing the upper bound function U f in a simpler form, in analogy to the
result obtained for TP.

Proposition – 2.3.4: Let f be a commutative conjunctor such that f ≤ TM.
If f is 1-Lipschitz, then a probabilistic relation Q on A is f -transitive if and only
if it is cycle-transitive w.r.t. the upper bound function U f defined by

U f (α, β, γ) = α + β − f (α, β) . (2.26)

Proof:
First, we observe that due to the monotonicity and commutativity of f , the
1-Lipschitz property of f can be stated equivalently as

y − f (x, y) ≤ z − f (x, z) , (2.27)

for any x and any y ≤ z.
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In view of Proposition 2.3.3, it is sufficient to show that
min(α + β − f (α, β), β + γ − f (β, γ), γ +α − f (γ,α)) = α + β − f (α, β) ,

for any (α, β, γ) ∈ ∆. As a double application of (2.27) leads to

β − f (α, β) ≤ γ − f (α, γ)

and
α − f (β,α) ≤ γ − f (β, γ) ,

the proposition indeed holds.
We now characterize the self-dual upper bound functions U f of the form (2.26).

Proposition – 2.3.5: The minimum operator TM is the only 1-Lipschitz com-
mutative conjunctor f ≤ TM such that the associated upper bound function U f
is self-dual.

Proof:
The self-dual upper bound functions of the form (2.26) are characterized by the
equality

α + β − f (α, β) + 1 − γ + 1 −β − f (1 − γ, 1 −β) = 1 ,
for any (α, β, γ) ∈ ∆. Rewriting this equality in the form

f (α, β) + f (1 − γ, 1 −β) = α + (1 − γ) ,
and taking into account that f ≤ TM, the only function f that identically satis-
fies this equality is f = TM.

Note that the corresponding (self-dual) upper bound function is then sim-
ply given by UM(α, β, γ) = α + β − min(α, β) = β, as announced earlier. If
we replace the condition f ≤ TM in Proposition 2.3.4 by the stronger condition
(in the given context) that f should have 1 as neutral element, then we are in
fact dealing with a commutative quasi-copula.

Corollary – 2.3.6: Let C be a commutative quasi-copula. A probabilistic
relation Q on A is C-transitive if and only if it is cycle-transitive w.r.t. the upper
bound function UC defined by

UC(α, β, γ) = α + β − C(α, β) . (2.28)
In case of a copula, the operation in (2.28) is known as the dual of the cop-

ula [64].
Corollary – 2.3.7: Let C be a commutative copula. A probabilistic relation

Q on A is C-transitive if and only if it is cycle-transitive w.r.t. the upper bound
function UC defined by

UC(α, β, γ) = C̃(α, β) , (2.29)
where

C̃(α, β) = α + β − C(α, β) (2.30)
is the dual of the copula C.
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Note that besides the dual of a copula, one also defines the co-copula C∗ of a
copula C by

C∗(x, y) = 1 − C(1 − x, 1 − y) , (2.31)
and the survival copula Ĉ associated to the copula C by

Ĉ(x, y) = x + y − 1 + C(1 − x, 1 − y) . (2.32)

Neither the dual C̃, nor the co-copula C∗ of a copula C is a copula [57]; on the
other hand, the survival copula Ĉ associated to C is a copula.

Using this terminology, the dual lower bound function LC can be written
compactly as

LC(α, β, γ) = 1 − UC(1 − γ, 1 −β, 1 −α)

= 1 − C̃(1 − γ, 1 −β) = Ĉ(γ, β) .

2.3.4 The case of t-norms
Corollary 2.3.7 applies in particular to t-norms that are copulas as well. Many
parametric families of t-norms contain a subfamily of copulas [56]. On the
other hand, there also exist lists of parametric families of copulas, most of them
containing a parametric subfamily of t-norms [64].

Although they appear to be quite technical, the Frank t-norms (1.2) are im-
portant solutions of an often encountered functional equation. To that end, we
first introduce the concept of an ordinal sum of t-norms [56].

Proposition – 2.3.8: Consider a countable family (Tα)α∈A of t-norms and a
corresponding family (]aα, eα[)α∈A of non-empty, pairwise disjoint open subin-
tervals of [0, 1]. The binary operation T on [0, 1] defined by

T(x, y) =

{

aα + (eα − aα)Tα

(

x−aα
eα−aα

, y−aα

eα−aα

)

, if (x, y) ∈ [aα , eα]2 ,
min(x, y) , otherwise.

is a t-norm, and is called the ordinal sum of the summands 〈aα , eα , Tα〉, α ∈ A.
Ordinal sums of Frank t-norms were shown to be the only t-norms T solv-

ing the functional equation

T(x, y) + S(x, y) = x + y

for some t-conorm S. In particular, when T = TF
λ this t-conorm is nothing else

but the Frank t-conorm SF
λ which coincides with the dual t-conorm of TF

λ in the
sense of (1.1):

SF
λ(x, y) = 1 − TF

λ (1 − x, 1 − y) . (2.33)
In the latter case, Corollary 2.3.7 can be rephrased as follows.

Proposition – 2.3.9: A probabilistic relation Q on A is TF
λ -transitive if and

only if it is cycle-transitive w.r.t. the upper bound function UF
λ defined by

UF
λ(α, β, γ) = SF

λ(α, β) . (2.34)
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Note that due to (2.33), the dual lower bound function LF
λ is given by

LF
λ(α, β, γ) = TF

λ (β, γ) .

From Proposition 2.3.9 we obtain the following special cases.

(a) As was mentioned before, a probabilistic relation Q is TM-transitive if
and only if it is cycle-transitive w.r.t. the self-dual upper bound function
UM defined by

UM(α, β, γ) = max(α, β) = β . (2.35)
Hence, for a TM-transitive probabilistic relation Q it must hold thatαabc +
βabc + γabc − 1 = βabc, or equivalently, αabc + γabc = 1, for any (a, b, c) ∈
A3.

(b) As proven in detail, a probabilistic relation Q is TP-transitive if and only
if it is cycle-transitive w.r.t. the upper bound function UP defined by

UP(α, β, γ) = α + β −αβ . (2.36)

(c) A probabilistic relation Q is TL-transitive if and only if it is cycle-transi-
tive w.r.t. the upper bound function UL defined by

UL(α, β, γ) = min(α + β, 1) .

Hence, for a TL-transitive probabilistic relation Q it must hold that αabc +
βabc + γabc − 1 ≤ min(αabc + βabc, 1), for any (a, b, c) ∈ A3. If αabc +
βabc < 1, then this inequality is trivially fulfilled. Therefore, a probabilis-
tic relation Q is TL-transitive if and only if it is cycle-transitive w.r.t. the
simpler equivalent upper bound function U ′

L defined by

U′
L(α, β, γ) = 1 . (2.37)

Note that the same equivalence holds for the less elegant upper bound
function U′′

L defined by

U′′
L(α, β, γ) =

{

1 , if β ≥ 1/2 ,
2 , if β < 1/2 . (2.38)

Expressions (2.35)–(2.37) nicely illustrate that TM-transitivity implies TP-tran-
sitivity and that TP-transitivity implies TL-transitivity.

2.4 Stochastic transitivity as cycle-transitivity
2.4.1 Stochastic transitivity
In this section, we propose a general notion of stochastic transitivity and show
when and how it fits into the framework of cycle-transitivity.
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Definition – 2.4.1: Let g be an increasing [1/2, 1]2 → [0, 1] mapping. A
probabilistic relation Q on A is called g-stochastic transitive if for any (a, b, c) ∈
A3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) . (2.39)

This definition includes many well-known types of stochastic transitivity.
Indeed, g-stochastic transitivity is known as

(i) strong stochastic transitivity when g = max [63];

(ii) moderate stochastic transitivity when g = min [63];

(iii) weak stochastic transitivity when g = 1/2 [63];

(iv) λ-transitivity, with λ ∈ [0, 1], when g = λ max +(1 − λ) min [4].

It is clear that strong stochastic transitivity implies λ-transitivity, which implies
moderate stochastic transitivity, which, in turn, implies weak stochastic transi-
tivity.

2.4.2 Stochastic transitivity as cycle-transitivity
Proposition – 2.4.2: Let g be a commutative, increasing [1/2, 1]2 → [0, 1]

mapping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A probabilistic relation Q
on A is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the upper
bound function Ug defined by

Ug(α, β, γ) =















β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,
min(α + β − g(α, β), β + γ − g(β, γ),

γ +α − g(γ,α)) , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.40)

Proof:
First of all, a tedious, yet simple verification shows that for a function g with
the given properties the corresponding function Ug defined in (2.40) belongs to
U . Essential is the additional condition g(1/2, x) ≤ x.

Consider a probabilistic relation Q on A and (a, b, c) ∈ A3. If βabc ≥ 1/2,
then also γabc ≥ 1/2 and at least two of the three elements qab, qbc and qac
are greater than or equal to 1/2. In this case, g-stochastic transitivity requires
that 1 −αabc ≥ g(βabc, γabc). If αabc < 1/2, this inequality is the only one that
must hold for (a, b, c) (and cyclic permutations of it) and g-stochastic transitiv-
ity turns out to be equivalent to the condition:

αabc + βabc + γabc − 1 ≤ βabc + γabc − g(βabc, γabc) .

However, if αabc ≥ 1/2, then two more inequalities must hold, namely 1 −
γabc ≥ g(αabc, βabc) and 1 − βabc ≥ g(αabc, γabc), and these inequalities to-
gether yield the condition αabc + βabc + γabc − 1 ≤ min(αabc + βabc − g(αabc,
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βabc), βabc +γabc − g(βabc, γabc), γabc +αabc − g(γabc,αabc)). If βabc < 1/2, there
is no upper bound for αabc +βabc +γabc − 1, which means that we can just put
2. Summarizing, we have shown that g-stochastic transitivity can be reformu-
lated as cycle-transitivity w.r.t. the upper bound function Ug.

Note that in general the additional conditions (2.10) are not satisfied by an
upper bound function of type (2.40). This is only the case when g(1/2, 1/2) > 0
or g(1/2, 1) > 1/2.

As in the case of fuzzy transitivity, we will establish sufficient conditions on
the function g which allow to bring the upper bound function Ug in a simpler
form. A first proposition restricts the range of g to the interval [1/2, 1]. Cycle-
transitivity w.r.t. Ug then always implies weak stochastic transitivity. Also, the
additional conditions (2.10) are then trivially fulfilled.

Proposition – 2.4.3: Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1]
mapping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A probabilistic relation Q
on A is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the upper
bound function Ug defined by

Ug(α, β, γ) =







β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.41)

Proof:
Consider a probabilistic relation Q on A and (a, b, c) ∈ A3. In view of Propo-
sition 2.4.2, we only need to consider the case αabc ≥ 1/2 and we know that
in this case g-stochastic transitivity requires that 1 −αabc ≥ g(βabc, γabc), 1 −
βabc ≥ g(αabc, γabc) and 1−γabc ≥ g(αabc, βabc). Since g takes values in [1/2, 1],
this can only hold if αabc ≤ 1/2, βabc ≤ 1/2 and γabc ≤ 1/2. Since αabc ≥ 1/2 it
then follows that αabc = βabc = γabc = 1/2. An equivalent way of arriving at
this single possibility is by requiring that αabc + βabc + γabc − 1 ≤ 1/2 in case
αabc ≥ 1/2.

From Proposition 2.4.3 we obtain the following special cases.

(a) A probabilistic relation Q is strongly stochastic transitive if and only if it
is cycle-transitive w.r.t. the upper bound function Uss defined by

Uss(α, β, γ) =







β , if β ≥ 1/2 ∧ α < 1/2 ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.42)

(b) A probabilistic relation Q is moderately stochastic transitive if and only
if it is cycle-transitive w.r.t. the upper bound function Ums defined by

Ums(α, β, γ) =







γ , if β ≥ 1/2 ∧ α < 1/2 ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.43)
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(c) A probabilistic relation Q is weakly stochastic transitive if and only if it
is cycle-transitive w.r.t. the upper bound function Uws defined by

Uws(α, β, γ) =







β + γ − 1/2 , if β ≥ 1/2 ∧ α < 1/2 ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.44)

(d) A probabilistic relation Q is λ-transitive, with λ ∈ [0, 1], if and only if it
is cycle-transitive w.r.t. the upper bound function Uλ defined by

Uλ(α, β, γ) =







λβ + (1 − λ)γ , if β ≥ 1/2 ∧ α < 1/2 ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 .

(2.45)

A final simplification, eliminating the special caseα = 1/2 in (2.41), is obtained
by requiring g to have neutral element 1/2, i.e. g(1/2, x) = g(x, 1/2) = x for
any x ∈ [1/2, 1].

Proposition – 2.4.4: Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1]
mapping with neutral element 1/2. A probabilistic relation Q on A is g-sto-
chastic transitive if and only if it is cycle-transitive w.r.t. the upper bound Ug
defined by

Ug(α, β, γ) =

{

β + γ − g(β, γ) , if β ≥ 1/2 ,
2 , if β < 1/2 . (2.46)

Proof:
Consider a probabilistic relation Q on A and (a, b, c) ∈ A3. As in the proof
of Proposition 2.4.3, we only need to consider the case αabc ≥ 1/2 in which
g-stochastic transitivity is equivalent to αabc = βabc = γabc = 1/2. We need to
show that an equivalent way of arriving at this single possibility, knowing that
g has neutral element 1/2, is by requiring in this case that αabc + βabc + γabc −
1 ≤ βabc +γabc − g(βabc, γabc), or equivalently, 1−αabc ≥ g(βabc, γabc). Indeed,
since g has neutral element 1/2, it holds that g ≥ max, and we must have that
1 −αabc ≥ γabc, which, given αabc ≥ 1/2, only occurs when αabc = γabc = 1/2,
whence also βabc = 1/2.

This proposition implies in particular that strong stochastic transitivity (g =
max) is equivalent to cycle-transitivity w.r.t. the simplified upper bound func-
tion U′

ss defined by

U′
ss(α, β, γ) =

{

β , if β ≥ 1/2 ,
2 , if β < 1/2 . (2.47)

Note that g-stochastic transitivity w.r.t. a function g ≥ max always implies
strong stochastic transitivity. This means that any probabilistic relation that is
cycle-transitive w.r.t. an upper bound function Ug of the form (2.46) is at least
strongly stochastic transitive.
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Comparing (2.35) and (2.38) with (2.47) and (2.43), it is clear that TM-transi-
tivity implies strong stochastic transitivity and that moderate stochastic transi-
tivity implies TL-transitivity.

Note that there is no connection between the weakest form of stochastic
transitivity (upper bound (2.44)) and the weakest form of C-transitivity (upper
bound (2.38)).

2.4.3 Partial stochastic transitivity
In [38], the notion of partial stochastic transitivity is defined as

Q(a, b) >
1
2 ∧ Q(b, c) >

1
2 ⇒ Q(a, c) ≥ min(Q(a, b), Q(b, c)) . (2.48)

Here, we wish to extend this definition as follows.

Definition – 2.4.5: Let g be a commutative ]1/2, 1]2 →]1/2, 1] mapping. A
probabilistic relation Q on A is called partially stochastic transitive w.r.t. the
function g, or in short partially g-stochastic transitive, if for any (a, b, c) ∈ A3

it holds that

Q(a, b) >
1
2 ∧ Q(b, c) >

1
2 ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) . (2.49)

Partial stochastic transitivity w.r.t. g = min will show up in Chapter 6 as the
characteristic transitivity of uniformly distributed random variables coupled
by the TL copula. In the next proposition we present a way of representing
partial g-stochastic transitivity as cycle-transitivity.

Proposition – 2.4.6: Let h be a commutative [0, 1]2 → [0, 1] mapping such
that h(x, y) ≤ 1/2 if min(x, y) ≤ 1/2, and h(x, y) > 1/2 if min(x, y) > 1/2.
Let g = h|]1/2,1]. It then holds that Q is partially g-stochastic transitive if and
only if Q is cycle-transitive w.r.t. upper bound function

Uh(α, β, γ) = β + γ − h(β, γ) . (2.50)

Proof:
Consider a probabilistic relation Q on A and (a, b, c) ∈ A3. We now investigate
all possibilities, for ease of notation we drop the index abc in αabc, βabc and γabc.
Case 1: α > 1/2 ∨γ < 1/2.
We consider the case α > 1/2, the case γ < 1/2 is analogous.

(2.49) ⇒ 1/2 > 1 −α ≥ g(β, γ) > 1/2, which is impossible. On the other
hand (2.50) ⇒ 1/2 < α ≤ 1 − h(β, γ) < 1/2, which is also impossible.
Case 2: β > 1/2 ∧α = 1/2 ∨β < 1/2 ∧γ = 1/2.
We consider the first possibility, the second possibility is analogous.

(2.49) ⇒ 1/2 = 1 −α ≥ g(β, γ) > 1/2, again impossible. The same impos-
sible condition is obtained using (2.50).
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Case 3: (β > 1/2 ∧α < 1/2)∨ (β < 1/2 ∧γ > 1/2).
We again consider only the first possibility as the second possibility is analo-
gous.

(2.50) ⇔ γ ≥ h(1−β, 1−α)∧α ≤ 1− h(β, γ) ⇔ α ≤ 1− g(β, γ) ⇔ (2.49).
Case 4: β = 1/2.

Conditions (2.49) are always fulfilled. On the other hand, cycle-transitivity
w.r.t. upper bound (2.50) is also always satisfied, thanks to the conditions upon
h.

Note that the conditions on the commutative function g in the above propo-
sition are not only sufficient conditions, they are also necessary for the condi-
tion (2.49) to be equivalent to cycle-transitivity w.r.t. the upper bound func-
tion (2.50). The above proposition implies that partial g-stochastic transitivity
can be equivalently expressed as cycle-transitivity w.r.t. upper bound function
Uh such that h(x, y) = g(x, y) when min(x, y) > 1/2 and h(x, y) = 1/2 when
min(x, y) ≤ 1/2. Note that the function h = TP does not always satisfy the
property h(x, y) > 1/2 when min(x, y) > 1/2.

2.4.4 Isostochastic transitivity
In Subsection 2.2.1, we have derived the most general polynomial self-dual up-
per bound functions. Here we define another family of self-dual upper bound
functions. Note that we will encounter multiple upper bound functions be-
longing to this new family.

Proposition – 2.4.7: Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1]
mapping with neutral element 1/2. It then holds that any ∆ → R function U
of the form

U s
g (α, β, γ) =

{

β + γ − g(β, γ) , if β ≥ 1/2 ,
α + β − 1 + g(1 −β, 1 −α) , if β < 1/2 , (2.51)

is a self-dual member of U .

Proof:
When β > 1/2, it easily follows that the dual lower bound function L(α, β, γ)
equals β + γ − g(β, γ), and coincides with the upper bound function. When
β = 1/2, both functions coincide provided that the equality

1/2 + γ − g(1/2, γ) = α − 1/2 + g(1/2, 1−α) (2.52)

holds for any α ≤ 1/2 and γ ≥ 1/2. This follows from the fact that 1/2 is the
neutral element of g. Finally, it should hold that U(0, 0, 1) = 0 and U(0, 1, 1) =
1. This is guaranteed by the fact that 1 is the absorbing element of g. Indeed,
g(x, 1) ≥ g(1/2, 1) = 1, and hence g(1, 1) = 1. This concludes the proof that
U is a self-dual member of U .

Note that condition (2.52) with α ≤ 1/2 ≤ γ is equivalent to the condition
that 1/2 is a neutral element of the function g defined over [1/2, 1]2. Indeed,
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rewriting (2.52) as 1 −α − g(1/2, 1 −α) = g(1/2, γ)− γ we see that 1 −α −
g(1/2, 1−α) must be fixed for any α ≤ 1/2. By setting α = γ = 1/2 in (2.52)
we obtain that g(1/2, 1/2) = 1/2 and therefore 1 −α − g(1/2, 1−α) = 0 for
α ≤ 1/2 which is equivalent to g having neutral element 1/2. The premisses
in the above proposition are therefore well chosen.

Also note that the function g in Proposition 2.4.7 has the same properties
as the function g in Proposition 2.4.4. Of course, the upper bound function U s

g
also satisfies the additional conditions (2.10).

Many of the polynomial self-dual upper bound functions can be recast in
the form (2.51). For instance, the self-dual upper bound function UM (which
characterizes TM-transitivity) is of the form (2.51) with g = max. As a sec-
ond example, let us reconsider the case of the self-dual upper bound function
UE(α, β, γ) = αβ +αγ + βγ − 2αβγ. Solving α (resp. γ) from the equation
α + β + γ − 1 = αβ + αγ + βγ − 2αβγ and substituting the solution in the
expression for UE(α, β, γ) in case β ≥ 1/2 (resp. β < 1/2), we obtain the
equivalent self-dual upper bound function

U′
E(α, β, γ) =















β + γ − βγ

βγ + (1 −β)(1 − γ)
, if β ≥ 1/2 ,

α + β − 1 +
(1 −α)(1−β)

αβ + (1 −α)(1−β)
, if β < 1/2 ,

(2.53)

which is of the form (2.51) with g defined by

g(x, y) =
x y

x y + (1 − x)(1− y)
. (2.54)

It is also interesting to know how cycle-transitivity w.r.t. an upper bound func-
tion of type (2.51) relates to strong stochastic transitivity.

Proposition – 2.4.8: Cycle-transitivity w.r.t. an upper bound function of
type (2.51) implies strong stochastic transitivity.

Proof:
This follows immediately from the fact that g(x, y) ≥ max(x, y).

Surprisingly, cycle-transitivity w.r.t. an upper bound function of type (2.51)
can be seen as a variant of g-stochastic transitivity, which is shown in the
proposition below.

Proposition – 2.4.9: A probabilistic relation Q on A is cycle-transitive w.r.t.
a self-dual upper bound function of type U s

g if and only if for any (a, b, c) ∈ A3

it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = g(Q(a, b), Q(b, c)) . (2.55)

The probabilistic relation Q will also be called isostochastic transitive w.r.t. g,
or shortly, g-isostochastic transitive.
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Proof:
Consider any (a, b, c) ∈ A3. When βabc > 1/2, (2.51) is equivalent to 1−αabc =
g(βabc, γabc). This is then equivalent to (2.55) as βabc ≥ 1/2 and γabc ≥ 1/2
while βcba < 1/2. When βabc < 1/2, (2.51) is equivalent to γabc = g(1 −
αabc, 1 −βabc). This is again equivalent to (2.55) as then 1 −αabc = γcba ≥ 1/2
and 1 − βabc = βcba ≥ 1/2 while βabc < 1/2. Finally, when βabc = 1/2,
conditions (2.51) and (2.55) are both equivalent to the condition αabc = γabc =
1/2.

In particular, a probabilistic relation Q is TM-transitive if and only if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b), Q(b, c)) ,

for any (a, b, c) ∈ A3. Note that this is formally the same as (1.9) with the
difference that in the latter case Q was only {0, 1/2, 1}-valued.

Note that the properties we imposed on g in Propositions 2.4.4 and 2.4.7 are
very close to the defining properties of t-conorms. Indeed, although associa-
tivity is not explicitly required, it follows quite naturally. Consider for instance
a g-isostochastic transitive probabilistic relation Q such that Q(a, b) ≥ 1/2,
Q(b, c) ≥ 1/2 and Q(c, d) ≥ 1/2. Then it holds that

Q(a, d) = g(Q(a, b), Q(b, d)) = g(Q(a, b), g(Q(b, c), Q(c, d)))

and

Q(a, d) = g(Q(a, c), Q(c, d)) = g(g(Q(a, b), Q(b, c)), Q(c, d)) ,

whence at least for the triplet (Q(a, b), Q(b, c), Q(c, d)) the function g is asso-
ciative. Adding (full) associativity makes g into a t-conorm on [1/2, 1], or after
appropriate rescaling, into a usual t-conorm on [0, 1].

Proposition – 2.4.10: When g is a commutative, associative and increasing
[1/2, 1]2 → [1/2, 1] mapping with neutral element 1/2, then the [0, 1]2 → [0, 1]
mapping Sg defined by

Sg(x, y) = 2g
(

1 + x
2 , 1 + y

2

)

− 1

is a t-conorm.

Proof:
One easily verifies that since g is increasing, associative and commutative, also
Sg is increasing, associative and commutative. Furthermore, Sg has 0 as neutral
element since

Sg(0, x) = 2g(1/2, (1 + x)/2)− 1 = (1 + x)− 1 = x ,

for any x ∈ [0, 1].
The two examples of self-dual upper bound functions given above fall in

the latter category. For the upper bound U s
g with g = max, corresponding to
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TM-transitivity, we obtain Sg = max. For the self-dual upper bound function
U′

E in (2.53), the associated t-conorm SE is given by

SE(x, y) =
x + y

1 + xy , (2.56)

which is the Hamacher t-conorm SH
2 (x, y) = 1 − TH

2 (1− x, 1− y) with param-
eter value 2 [48], where

SH
γ (x, y) =

x + y − (2 − γ)xy
1 − (1 − γ)xy , γ ≥ 0 ,

and
TH

γ (x, y) =
xy

γ + (1 − γ)(x + y − xy)
, γ ≥ 0 .

This t-conorm is a member of the well-known class of strict t-conorms which
are of the form

S(x, y) = g−1(g(x) + g(y)) ,

with g an additive generator, i.e. a strictly increasing and continuous [0, 1] →
[0, +∞] mapping that satisfies g(0) = 0 (see e.g. [57]). For SH

2 , we obtain
g = ln 1+t

1−t . For more properties about the Hamacher t-norms we refer to [39].

2.5 Symmetric payoff relations
The difference in complexity of (2.20) and (2.23) suggests that simpler tran-
sitivity formulations are obtained when the probabilistic relation Q = [qi j] is
changed to the relation Q′ = [ai j], ai j ∈ [−1/2, 1/2], using the transformation
ai j = qi j − 1/2. The obtained values ai j can be regarded as rescaled payoffs. In
Chapters 5 and 7 a payoff matrix will be obtained by transforming the proba-
bilistic relation in exactly this way. When the values ai j describe a relation, we
will call Q′ a symmetric payoff relation.

Of course, the whole of probability theory could be restated by replacing
the unit interval with the interval [−1/2, 1/2]. This will not be done here. We
merely wish to restate cycle-transitivity when used for symmetric payoff re-
lations and show how the upper bound functions are transformed. To that
extent, let ∆′ = {(x, y, z) ∈ [−1/2, 1/2]3 | x ≤ y ≤ z} and let

α′
i jk = min(ai j, a jk, aki) , β′

i jk = median(ai j, a jk, aki) , γ′
i jk = max(ai j, a jk, aki) .

The upper bound functions defined on ∆′ are then given by those satisfying
the definition below.

Definition – 2.5.1: A function U ′ : ∆′ → R is called an upper bound func-
tion if it satisfies:

(i) U′(−1/2,−1/2, 1/2) ≥ −1/2 and U ′(−1/2, 1/2, 1/2) ≥ 1/2;
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(ii) for any (α′, β′, γ′) ∈ ∆′:

U′(α′, β′, γ′) + U′(−γ′,−β′,−α′) ≥ 0 . (2.57)

The class of upper bound functions is denoted U ′.

The dual lower bound function L′ of U′ is given by

L′(α′, β′, γ′) = −U′(−γ′,−β′,−α′) . (2.58)

Finally, cycle-transitivity for these symmetric payoff relations can be defined.

Definition – 2.5.2: A symmetric payoff relation Q on A is called cycle-
transitive w.r.t. an upper bound function U ′ ∈ U ′ if for any (a, b, c) ∈ A3 it
holds that

L′(α′
abc, β′

abc, γ′
abc) ≤ α′

abc + β′
abc + γ′

abc ≤ U′(α′
abc, β

′
abc, γ′

abc) , (2.59)

where L′ is the dual lower bound function of U ′.

We end this section with a list of upper bound functions defined over ∆

and their corresponding upper bound function defined over ∆′. To reduce the
complexity of the table, we have removed the conditions on the values when
an upper bound consists of multiple expressions. Note that the correspondence
between both types of upper bound function is given by (2.18).



“main” — 2005/9/15 — 7:22 — page 41 — #63
i

i

i

i

i

i

i

i

2.5. Symmetric payoff relations 41

Table 2.1: Correspondence between the upper bound functions of both definitions of
cycle-transitivity.

Name Upper bound U Upper bound U ′

multiplicative αβ +αγ + βγ − 2αβγ −4α′β′γ′

polynomial (2.23) (2.20)

C-transitive α + β − C(α, β) α′ + β′ − C′(α′, β′)

C′(x, y) = C(x + 1
2 , y + 1

2 )− 1
2

g-stochastic















β + γ − g(β, γ)

1/2
2















β′ + γ′ − g′(β′, γ′)

0
3/2

g′(x, y) = g(x + 1
2 , y + 1

2 )− 1
2

g-isostochastic















β + γ − g(β, γ)

α + β − 1+

g(1 −β, 1 −α)

{

β′ + γ′ − g′(β′, γ′)

α′ + β′ − g′(−β′,−α′)

g′(x, y) = g(x + 1
2 , y + 1

2 )− 1
2

A discovery is said to be an accident meeting a prepared mind.

— ALBERT VON SZENT-GYURGYI
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In this chapter, we introduce the notion of a dice model [32, 33] as a frame-
work for generating a class of probabilistic relations. We investigate the transi-
tivity of the probabilistic relations generated by a dice model and prove that it
is a special type of cycle-transitivity, which we have called dice-transitivity, that
is situated between moderate stochastic transitivity or product-transitivity on
the one side, and Łukasiewicz-transitivity on the other side. Finally, it is shown
that any probabilistic relation with rational elements on a 3-dimensional space
of alternatives which possesses this particular type of cycle-transitivity, can be
generated by a dice model. Dice-transitivity is a type of transitivity that cannot
be cast into any of the classical types of transitivity, in which weak stochastic
transitivity is a minimal requirement. As will be shown in this chapter, the
probabilistic relation generated by a dice model are not all weakly stochastic
transitive.

In Sections 1 and 2 the dice model is defined, Section 3 then involves a
standardization of the specific dice used in the models, which will make the
determination of the characteristic transitivity simpler. In Section 4, the charac-
teristic transitivity of the dice model is determined. Section 5 then considers a
natural question about the nature of dice-transitivity and shows that any dice-
transitive 3-dimensional relation can be generated by a dice model consisting
of at most seven so-called blocks. Finally, Section 6 investigates the transitiv-
ity of higher-dimensional dice models. It turns out that dice-transitivity is no
longer the characteristic transitivity of the dice model for higher dimensions.
Many efforts, of which we will report, have been made to obtain the desired
result for 4-dimensional dice models, however no conclusive answer has yet
been obtained. Note that the fact that dice-transitivity can be expressed in the
framework of cycle-transitivity stresses the relevance of this newly developed
tool for expressing transitivity properties.

3.1 Origin of the model
The dice model is inspired upon an ordinary game between two players, with
three dice: Player 1 erases the spots from the faces of three fair dice (with 6
faces) and writes one number from 1, 2, . . ., 18 on each face. Since Player 1
writes the numbers on the faces it seems fair to let Player 2 choose her dice first.
Of course, Player 2 tries to choose the best dice. Each of them risks e 1, chooses
one dice, they throw the dice, and the person having the bigger number on
top of her dice receives the e 2. They can then throw their dice again until one
of the players begins to show signs of boredom or is broke. It turns out that,
despite the disadvantage of choosing last, Player 1 can distribute the numbers
on the faces in such a way that she will always win in the long run.

Such an example for distributing the numbers over the three dice A, B, C is

A = {1, 3, 4, 15, 16, 17}, B = {2, 10, 11, 12, 13, 14}, C = {5, 6, 7, 8, 9, 18}.

Denoting by P(X, Y) the probability that dice X wins from dice Y, we have
P(A, B) = 20/36, P(B, C) = 25/36, P(C, A) = 21/36. In the above example,
it holds that P(A, B) > 1/2, P(B, C) > 1/2 and P(C, A) > 1/2, which means



“main” — 2005/9/15 — 7:22 — page 44 — #66
i

i

i

i

i

i

i

i

44 Chapter 3. The Dice Model

that for any of the three dice, one of the remaining dice will always win from
it in the long run. The corresponding relation “wins in the long run from” is
therefore not transitive and forms a cycle. Formulating the above observation
in another way, if we interprete the probabilities P(A, B), P(B, C) and P(C, A)
as elements of a [0, 1]-valued relation on the space of alternatives {A, B, C},
then this valued relation is even not weakly stochastic transitive.

The above example will be generalized to the concept of a dice model in the
following sense. Firstly, it is possible to consider an arbitrary (but fixed) num-
ber m ≥ 2 of dice, each dice being characterized by a set Ai (i = 1, 2, . . . , m) of
integers. The value m then denotes the dimension of the dice model. Secondly,
each set Ai may contain ni integers, with ni not necessarily equal to six. In
other words, we allow a dice to possess any number of faces, but do not care
whether such a dice can be materialized and we will nevertheless maintain the
metaphor dice. Finally, we do not insist on having mutually distinct numbers
on the faces of a single dice or among different dice. We do impose the numbers
to be strictly positive integers as this seems appropriate in the context of dice.
Allowing negative numbers would not add new probabilistic relations as there
always exists an equivalent model, w.r.t. the transitivity of the probabilistic re-
lation, in which only positive integers are used. Indeed, it suffices to increment
each element from the original model containing negative numbers by the ab-
solute value of the lowest number with an additional increment of 1. Similarly,
allowing real numbers does not add new probabilistic relations either. In the
present chapter we are only concerned about the transitivity properties of the
models and therefore only the relative order of the elements matters. However,
in chapters 5 and 7 the restriction of allowing only strictly positive integers will
be important, as the sum of the integers on the faces of a dice will become im-
portant.

Given a set of m generalized dice we will define the winning probabilities
for each pair of dice and this set of dice is called an m-dimensional dice model,
generating the corresponding probabilistic relation.

3.2 The dice model
In the dice model, the name dice is reserved to denote a finite multiset of strictly
positive integers. We recall that a multiset is a set in which the elements need
not be distinct. The cardinality of the multiset equals the number of faces of the
dice and on each face is written exactly one of the numbers from the multiset
so that each number appears on exactly one face. Furthermore, each face of the
dice has equal likelihood of showing up when the corresponding hypothetical
material dice is randomly thrown. Throughout this work, the terms dice and
multiset will be used for denoting the same concept, explained above.

When a total of m dice will be compared, we speak of a collection of m dice.
When it is clear that a collection of dice or multisets is meant, we will simply
use the term collection. The collective multiset corresponding to a collection of
m dice is given by the union of the multisets corresponding to the dice. The
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cardinality of this collective multiset therefore equals the sum of the cardinal-
ities of those m multisets. For the purpose of this chapter, we will frequently
make use of a special type of collection, called standard collection. This type of
collection will also be of interest in Chapter 8.

Definition – 3.2.1: A standard collection is a collection of m multisets Mi
of cardinality ni for which the collective multiset M is given by N[1, n1 + n2 +
· · ·+ nm].

Throughout this work, N[a, b] will denote the set of integers in the interval
[a, b]. When a > b then [a, b] = ∅. Note that we will always write the elements
of a multiset nondecreasingly. Definition 3.2.1 implies that all elements of the
collective multiset M are different and that every integer in M occurs once in
just one of the composing multisets Mi. In fact, the multisets Mi of a standard
collection are ordinary sets that constitute a partition of the ordinary set M.

We now indicate how we can unambiguously associate a probabilistic rela-
tion to a given collection of dice.

Definition – 3.2.2: For any two dice A and B, with n1 resp. n2 faces, we
define

P(A, B) =
1

n1n2
(#{(a, b) ∈ A × B | a > b}) ,

and
I(A, B) =

1
n1n2

(#{(a, b) ∈ A × B | a = b}) .

It then holds that
D(A, B) = P(A, B) +

1
2 I(A, B) (3.1)

is a probabilistic relation.

It should be noted that, given a couple (A, B) of multisets, P(A, B) (resp.
I(A, B)) is the probability that an element drawn at random (with a uniform
distribution) from the multiset A is strictly greater than (resp. equal to) an ele-
ment drawn at random from the multiset B. If, for example, A is an ordinary
integer set of cardinality n, then according to the above definition, we obtain
P(A, A) = (n − 1)/2n and I(A, A) = 1/n. In the context of fuzzy prefer-
ence modelling [20], a strict preference relation P is assumed to be irreflexive
(P(A, A) = 0) and an indifference relation to be reflexive (I(A, A) = 1). The
[0, 1]-valued relations introduced above, despite their probabilistic interpreta-
tion, do not fit into the framework of fuzzy preference structures. However,
the probabilistic relation D can also be written as

D(A, B) = P′(A, B) +
1
2 I′(A, B) ,

where P′ and I′ are defined by

P′(A, B) = max(P(A, B)− P(B, A), 0) ,
I′(A, B) = 1− | P(A, B)− P(B, A) | .
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Now, P′ (resp. I′) can be interpreted as a strict preference (resp. indifference)
relation. In particular, for an ordinary integer set A of any cardinality n, we
obtain P′(A, A) = 0 and I ′(A, A) = 1.

Definition – 3.2.3: The probabilistic relation Q = [qi j] generated by an m-
dimensional dice model consisting of the collection of dice (A1, A2, . . . , Am) is
defined by qi j = Q(Ai, A j) = D(Ai, A j), with D defined in (3.1).

The probabilistic relation generated by an m-dimensional dice model can be
represented by a weighted directed graph with m nodes. Node i corresponds
to dice Ai. Between every pair of nodes an arc is drawn and its direction is
arbitrarily chosen. If an arc is drawn from node i to node j, then it carries
the weight qi j. It may be replaced by an arc from node j to node i carrying
the weight q ji = 1 − qi j. Since qii = 1/2 for all i, for the sake of simplicity,
loops at the graph nodes are not drawn. Figure 3.1 illustrates the graphical
representation of the probabilistic relation generated by a dice model.

{7, 7, 8, 8} {4, 6, 6, 6}

{3, 4, 4, 5}

1/8

1

3/4

{2, 7, 8, 9}3/4

1
1/2

Figure 3.1: A 4-node graph representing the probabilistic relation generated by the dice
{3, 4, 4, 5}, {2, 7, 8, 9}, {4, 6, 6, 6} and {7, 7, 8, 8}.

3.3 Standardization of a dice model
From the definitions introduced in the previous section it is clear that many
different collections of m multisets can generate the same probabilistic rela-
tion. The question arises whether for a probabilistic relation generated by a
collection of multisets, there always exists at least one standard collection that
generates the same probabilistic relation. An affirmative answer to this ques-
tion is obtained in this section.

Lemma – 3.3.1: Any collection C = (A1, A2, . . . , Am), with collective multiset
M, can be transformed into a collection C′ = (A′

1, A′
2, . . . , A′

m), where #Ai =
#A′

i, with collective multiset M′, so that:

1. C and C′ generate the same probabilistic relation ;
2. 1 ∈ M′ ;
3. v ∈ M′ ⇒ v ∈ N[1, n1 + n2 + . . . + nm] ;
4. v occurs n times in M′ ⇒ M′ ∩N[v + 1, v + n − 1] = ∅ .

(3.2)
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Proof:
The proposed transformation of C into C′ is essentially the unique order-pre-
serving renumbering of the elements of M satisfying conditions 2, 3 and 4.

Example – 3.3.2:
To illustrate this transformation, let us consider the following example. The
collection (A1, A2, A3) with







A1 = {2, 2, 11, 14, 15}
A2 = {2, 3, 3, 5, 12}
A3 = {8, 8, 8, 9, 10}

is transformed into the collection (A′
1, A′

2, A′
3) with







A′
1 = {1, 1, 12, 14, 15}

A′
2 = {1, 4, 4, 6, 13}

A′
3 = {7, 7, 7, 10, 11}

One can easily verify that Q(A1, A2) = Q(A′
1, A′

2) = 3/5, that Q(A2, A3) =
Q(A′

2, A′
3) = 1/5 and that Q(A3, A1) = Q(A′

3, A′
1) = 2/5. J

Theorem – 3.3.3: Any collection C = (A1, A2, . . . , Am) can be transformed
into a standard collection C̃ = (Ã1, Ã2, . . . , Ãm), where #Ãi = 2#Ai, that gen-
erates the same probabilistic relation.

Proof:
We first transform C into C′, using Lemma 3.3.1. Next, we will transform the
collective multiset M′ of the collection C′ into a multiset M̃ corresponding to a
standard collection C̃ = (Ã1, Ã2, . . . , Ãm), with #Ãi = 2#A′

i, that generates the
same probabilistic relation.

For each distinct number ` in the multisets of C′ (each distinct number in
M′) we do the following. If ` occurs only once in M′, then we replace it by
2` − 1 and 2`. So, the multiset Ãi of C̃ that corresponds to the multiset A′

i of
C′ containing `, contains 2` − 1 and 2` instead. If the number ` occurs twice
in M′, we replace one ` by 2`− 1 and 2` + 2 and the other ` by 2` and 2` + 1.
Generally speaking, if ` occurs t times in M′, then we replace the jth `, j ≥ 1, by
2` + j − 2 and 2` + 2t − j − 1. Note that the t equal numbers ` are arbitrarily
ordered, each ordering possibly giving rise to a different standard collection.

We will now prove that C′ and C̃ generate the same probabilistic relation.
As a first step we note that, thanks to the fourth property in (3.2), for any two
distinct numbers a > b from M′ that are respectively transformed into the
pairs of numbers a1, a2 and b1, b2 contained in M̃, it holds that both a1 and
a2 are strictly greater than b1 and b2. Therefore the contribution to D(A′

i, A′
j)

originating from different numbers in A′
i and A′

j (the P(A′
i, A′

j) part) equals the
contribution to D(Ãi, Ã j) originating from the transformed pairs of those num-
bers in Ãi and Ã j. It remains to investigate whether the I(A′

i, A′
j) contribution
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to D(A′
i, A′

j) is reproduced by the transformed numbers (which are mutually
distinct). To that aim let us consider the case where ` occurs in at most 2 mul-
tisets, say A′

i and A′
j , k times in A′

i and t − k times in A′
j with k ∈ {0, 1, . . . , t}

and t > 1. Without loss of generality we can assume that no other number but
` occurs in A′

i and A′
j and that ` = 1.

According to the proposed transformation, Ãi contains the 2k numbers
j1, 2t − j1 + 1, j2, 2t − j2 + 1, . . ., jk, 2t − jk + 1, with 1 ≤ j1 < j2 < · · · <
jk ≤ t, whereas Ã j contains the remaining numbers in N[1, 2t]. Counting the
number s of couples (a, b) ∈ Ãi × Ã j for which a > b, we obtain in increasing
order of a:

s = ( j1 − 1) + ( j2 − 2) + · · ·+ ( jk − k) +

(2t − jk − k) + (2t − jk−1 − k − 1) + · · ·+ (2t − j1 − 2k + 1)

= 2k(t − k) .

Hence, D(Ãi, Ã j) = 2k(t − k)/(4k(t − k)) = 1/2 which is equal to D(A′
i, A′

j).
Finally, the generalization to the case where the same number ` occurs in three
or more multisets is straightforward.

Example – 3.3.4:
Continuing the same example as before, the standard collection (A′

1, A′
2, A′

3)
can for instance be transformed into the collection (Ã1, Ã2, Ã3) with







Ã1 = {2, 3, 4, 5, 23, 24, 27, 28, 29, 30}
Ã2 = {1, 6, 7, 8, 9, 10, 11, 12, 25, 26}
Ã3 = {13, 14, 15, 16, 17, 18, 19, 20, 21, 22}

One can easily verify that the generated probabilistic relation is unchanged. J

Theorem 3.3.3 enables us to focus without loss of generality solely upon stan-
dard collections when investigating the transitivity properties of the proba-
bilistic relations generated by collections of multisets. We will call standard
collections of two (resp. three, resp. four) dice standard duplets (resp. standard
triplets, resp. standard quartets). Note that for standard collections it holds
that D(Ai, A j) = P(Ai, A j) for all i 6= j.

3.4 Transitivity of the dice model
In this section, we will use the concept of cycle-transitivity to show that the
type of transitivity exhibited by a probabilistic relation Q generated by a dice
model, can be situated between TP-transitivity and TL-transitivity. This is ex-
pressed in the next four theorems.

Proposition – 3.4.1: Not all probabilistic relations that are generated by a
dice model are TP-transitive.
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Proof:
The probabilistic relation generated by the dice from Example (3.3.4) is not TP-
transitive as it holds that Q(A2, A1) = 2/5, Q(A1, A3) = 3/5, Q(A2, A3) = 1/5
and 2/5 · 3/5 > 1/5.

Since TM-transitivity implies TP-transitivity, clearly not all probabilistic re-
lations generated by a dice model are TM-transitive.

Proposition – 3.4.2: Every probabilistic relation generated by a dice model
is TL-transitive.

Proof:
Firstly, we note that in view of Theorem 3.3.3 the proof must only be given
for an arbitrary standard collection. Furthermore, we only need to show that
the elements of the generated probabilistic relation Q = [qi j] satisfy the double
inequality

0 ≤ αi jk + βi jk + γi jk − 1 ≤ 1

for all i < j < k. Let us define

xi jk =
1

nin jnk
#{(xi, x j, xk) ∈ Ai × A j × Ak | xi > x j > xk} ,

then, since the collection is standard, it follows that

xi jk + xik j + x jik + x jki + xki j + xk ji = 1 .

On the other hand, it holds that qi j = xi jk + xik j + xki j, q jk = xi jk + x jik + x jki,
and qki = xki j + xk ji + x jki. Consequently,

αi jk + βi jk + γi jk − 1 = qi j + q jk + qki − 1 = xi jk + x jki + xki j ,

and the value of the last expression always lies in [0, 1], which completes the
proof.

The reverse statement is not always true, as is illustrated by the following
proposition.

Proposition – 3.4.3: Not all TL-transitive probabilistic relations can be gen-
erated by a dice model.

Proof:
We will indicate a family of 3-dimensional TL-transitive probabilistic relations
that cannot be generated by a triplet of dice. Indeed, let us consider the 3-
dimensional probabilistic relation Q with rational elements satisfying q12 6= 1,
q23 6= 1, q31 6= 1 and q12 + q23 + q31 = 2. Clearly such relations exist and
are TL-transitive. Suppose that there exists a standard triplet (A1, A2, A3) with
#A1 = n1, #A2 = n2 and #A3 = n3, such that

q12 + q23 + q31 = 2 .
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Let us first consider the case where the largest number n = n1 + n2 + n3 is not
in a multiset of cardinality one. Without loss of generality we can assume that
A1 contains the number n. Let us consider the standard triplet (A′

1, A′
2, A′

3),
with corresponding elements q′12, q′23 and q′31 of the probabilistic relation Q′,
that is obtained from (A1, A2, A3) after removing n from A1. Hence #A′

1 =
n1 − 1 and we have in particular:

q′12 =
n1n2q12 − n2
(n1 − 1)n2

=
n1q12 − 1

n1 − 1 = q12 +
q12 − 1
n1 − 1 ,

q′23 = q23 ,

q′31 =
n3n1q31

n3(n1 − 1)
=

n1q31
n1 − 1 = q31 +

q31
n1 − 1 .

It follows that

q′12 + q′23 + q′31 = q12 + q23 + q31 +
q12 + q31 − 1

n1 − 1

= 2 +
1 − q23
n1 − 1 > 2 ,

which is a contradiction since by Proposition 3.4.2 the above sum should not
exceed 2 for a standard triplet. Therefore, (A1, A2, A3) is not a standard triplet.

There remains the case of a standard triplet with n contained in a multiset of
cardinality 1. Suppose n1 = 1 and A1 = {n} with n = 1 + n2 + n3. It follows
that q31 = 0 and q12 = 1, but the latter equality is clearly not in agreement
with the basic assumptions. Finally, since Q cannot be generated by a standard
triplet, due to Theorem 3.3.3, it cannot be generated by an arbitrary triplet.

In the case of TP-transitive probabilistic relations, we can give conditions
under which their generation by means of a dice model is always possible.

Proposition – 3.4.4: Every 3-dimensional TP-transitive probabilistic rela-
tion Q with rational elements can be generated by a dice model.

Proof:
Consider a 3-dimensional probabilistic relation Q with rational elements qi j.
Without loss of generality (the other case is analogous), we assume that the
elements of Q can be relabelled such that

q12 = α123, q23 = β123, q31 = γ123. (3.3)

Since α123, β123, γ123 are rational numbers, they have a least common de-
nominator which we will call n. Furthermore, let p = nα123, q = n β123 and
r = n γ123. In this notation, TP-transitivity means that the double inequality

qr ≤ n(p + q + r − n) ≤ n(p + q)− pq
holds. Since qr ≤ nq ≤ n(p + q) − pq, we can distinguish two cases for the
construction of the standard triplet. The first case is the one where p, q, r
satisfy

qr ≤ n(p + q + r − n) ≤ nq ,
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or, equivalently,
(n − q)(n − r) ≤ np ≤ n(n − r) . (3.4)

Then we define

A1 = N[1, r] ∪ E ,
A2 = N[r + 1, n − q + r] ∪ Ec , (3.5)
A3 = N[n − q + r + 1, 2n − q + r] ,

with E a subset with cardinality (n − r) of N[2n − q + r + 1, 3n] and Ec =
N[2n − q + r + 1, 3n] \ E. Ec has cardinality q. From (3.5) it is immediately
clear that Q(A2, A3) = nq/n2 = β123 and Q(A3, A1) = nr/n2 = γ123. De-
pending upon the choice of E we obtain that Q(A1, A2) can vary in steps of
1/n2 from (n− q)(n− r)/n2 when E = N[2n− q + r + 1, 3n− q] to n(n − r)/n2

when E = N[2n + r + 1, 3n]. In particular, for all p satisfying (3.4) at least one
subset E can be found for which Q(A1, A2) = np/n2 = α123.

The second case is the one where p, q, r satisfy

nq ≤ n(p + q + r − n) ≤ n(p + q) − pq ,

or, equivalently,
n(n − p) ≤ nr ≤ n2 − pq . (3.6)

We now define

A1 = N[1, n − p]∪ Ec ,
A2 = N[n − p + q + 1, 2n − p + q] , (3.7)
A3 = N[n − p + 1, n − p + q] ∪ E ,

where E is a subset with cardinality (n − q) of N[2n − p + q + 1, 3n] and there-
fore Ec = N[2n − p + q + 1, 3n] \ E has cardinality p. From (3.7) it is imme-
diately clear that Q(A1, A2) = np/n2 = α123 and Q(A2, A3) = nq/n2 =
β123. Depending upon the choice of E we obtain that Q(A3, A1) can vary from
n(n− p)/n2 when E = N[2n− p + q + 1, 3n− p] to (n(n− p) + (n− q)p)/n2 =
(n2 − pq)/n2 when E = N[2n + q + 1, 3n]. Hence for all r satisfying (3.6) again
at least one subset E can be found for which Q(A3, A1) = nr/n2 = γ123.

Since TM-transitivity implies TP-transitivity, the construction from Proposi-
tion 3.4.4 can be used to establish a standard triplet that generates a given 3-
dimensional TM-transitive probabilistic relation with rational elements. Using
the same notations as before and using the property p + r = n which charac-
terizes TM-transitivity, we obtain two constructions, namely

A1 = N[1, r] ∪N[2n + r + 1, 3n] ,
A2 = N[r + 1, n − q + r] ∪N[2n − q + r + 1, 2n + r] , (3.8)
A3 = N[n − q + r + 1, 2n − q + r] ,
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and

A1 = N[1, r] ∪N[2n + r + 1, 3n] ,
A2 = N[q + r + 1, n + q + r] , (3.9)
A3 = N[r + 1, q + r] ∪N[n + q + r + 1, 2n + r] .

Using the equality α123 +γ123 = 1, we indeed obtain for both standard triplets
that q12 = Q(A1, A2) = α123, q23 = Q(A2, A3) = β123 and q31 = Q(A3, A1) =
γ123.

We now want to characterize more precisely the transitivity of the prob-
abilistic relations generated by a dice model and therefore have reached the
point where the most important results of this chapter can be formulated.

Theorem – 3.4.5: Every probabilistic relation generated by a dice model is
cycle-transitive w.r.t. the upper bound function UD defined by

UD(α, β, γ) = β + γ −βγ . (3.10)

Cycle-transitivity w.r.t. the upper bound function UD will be called dice-tran-
sitivity.

Proof:
We are not able to formulate a direct proof in the style of the one of Propo-
sition 3.4.2. Instead, we will establish a proof by induction. As said before,
we can restrict the proof to probabilistic relations Q generated by a standard
triplet.

By induction, suppose there exists a standard triplet (A1, A2, A3) for which
#A1 = n1, #A2 = n2, #A3 = n3 and that generates a dice-transitive probabilis-
tic relation, i.e.

αβ ≤ α + β + γ − 1 , (3.11)
for both loop directions.

We now construct a new standard triplet by attributing to one of the three
multisets the additional number n = n1 + n2 + n3 + 1. We can arbitrarily at-
tribute n to A1, because there have not been put any restrictions on the three
multisets. We need to prove that for this new triplet the inequality (3.11) still
holds for both loop directions. We will give the proof for the 123-loop. The
proof for the 321-loop is completely similar and is left to the reader. For the
values α123, β123, γ123 we will drop the indices. We will denote the newly
obtained values, after attributing an additional number, with accents and we
obtain:

n′
1 = n1 + 1 , n′

2 = n2 , n′
3 = n3 ,

q′12 =
n1n2q12 + n2
(n1 + 1)n2

=
n1q12 + 1

n1 + 1 ,

q′23 = q23 ,

q′31 =
n1q31
n1 + 1 ,
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from which it follows that:

q′12 + q′23 + q′31 − 1 =
n1

n1 + 1 (α + β + γ − 1) +
q23

n1 + 1 . (3.12)

We distinguish three cases for q23 and in each case the induction hypothesis
(3.11) is utilized.
Case 1: q23 = α.

(3.12) ≥ α
n1β+1
n1+1 = q′23

n1β+1
n1+1 ≥ α′β′ .

Case 2: q23 = β.

(3.12) ≥ β
n1α+1
n1+1 = q′23

n1α+1
n1+1 ≥ α′β′ .

Case 3: q23 = γ.
Case 3.1: q31 = α.

(3.12) ≥ α
n1β+1
n1+1 = αq′12 ≥ q′31q′12 ≥ α′β′ .

Case 3.2: q31 = β.

(3.12) ≥ β
n1α+1
n1+1 = βq′12 ≥ q′31q′12 ≥ α′β′ .

Finally, we still need to start the induction and therefore have to consider
the basic case, which according to the induction hypothesis consists of a stan-
dard triplet where the multiset containing the highest number n is a singleton.
We need to prove that for such a triplet, inequality (3.11) holds for both loop
directions. For both loop directions it clearly holds that α = 0 and γ = 1.
Therefore, it is sufficient that for both loop directions 0 ≤ 0 + β + 1 − 1 holds
and this inequality is indeed always satisfied.

Dice-transitivity is a weaker type of transitivity than TP-transitivity, but is
stronger than TL-transitivity. This follows from the fact that

UP(α, β, γ) = β +α(1 −β) ≤ β + γ(1 −β) = UD(α, β, γ) ,

and
UD(α, β, γ) = 1 − (1 −β)(1 − γ) ≤ 1 = U ′

L(α, β, γ) .
Although Ums 6≤ UD, it does hold that moderate stochastic transitivity implies
dice-transitivity. We first prove a more general proposition.

Proposition – 3.4.6: Cycle-transitivity w.r.t. an upper bound function de-
fined by U(α, β, γ) = β + γ − g(β, γ), with g a [1/2, 1]2 → [0, 1] mapping and
g ≤ min, is equivalent to cycle-transitivity w.r.t. upper bound

U′(α, β, γ) =

{

β + γ − g(β, γ) , if β > 1/2,
2 , otherwise. (3.13)

Proof:
It is easily verified that for β ≤ 1/2, the upper bound condition of cycle-
transitivity w.r.t. U is always fulfilled.



“main” — 2005/9/15 — 7:22 — page 54 — #76
i

i

i

i

i

i

i

i

54 Chapter 3. The Dice Model

As xy ≤ min(x, y), dice-transitivity is equivalent to cycle-transitivity w.r.t.

U′
D(α, β, γ) =

{

β + γ −βγ , if β > 1/2,
2 , otherwise.

It is now easily verified that Ums ≤ U′
D and therefore moderate stochastic tran-

sitivity implies dice-transitivity.
It is an interesting result that under the same conditions as for TP-transitive

probabilistic relations, also dice-transitive probabilistic relations can be gen-
erated by a dice model. In the next chapter, it will even be shown that this
extra condition of the rationality of the elements of the probabilistic relations
is superfluous.

Theorem – 3.4.7: Every 3-dimensional dice-transitive probabilistic relation
Q with rational elements can be generated by a dice model.

Proof:
The proof closely resembles the proof of Proposition 3.4.4. We again consider
the case where

q12 = α123, q23 = β123, q31 = γ123,
and let n, p, q, r denote the same quantities as before. Hence, with these
notations dice-transitivity means that the double inequality

pq ≤ n(p + q + r − n) ≤ n(q + r)− qr

holds. As pq ≤ nq ≤ n(q + r)− qr, we will again distinguish two cases for the
construction of the standard triplet (A1, A2, A3). The first case is the one where
p, q, r satisfy

pq ≤ n(p + q + r − n) ≤ nq ,
or, equivalently,

(n − p)(n − q) ≤ nr ≤ n(n − p) . (3.14)
Then we define

A1 = Ec ∪N[3n − p + 1, 3n] ,
A2 = N[n − p + q + 1, 2n− p + q] , (3.15)
A3 = E ∪N[2n − p + q + 1, 3n − p] ,

with E a subset with cardinality q of N[1, n− p + q] and Ec = N[1, n− p + q] \E.
Note that Ec has cardinality (n − p). From (3.15) it is immediately clear that
Q(A1, A2) = np/n2 = α123 and Q(A2, A3) = nq/n2 = β123. Depending
upon the choice of E we obtain that Q(A3, A1) can vary in steps of 1/n2 from
(n− p)(n− q)/n2 when E = N[1, q] to n(n− p)/n2 when E = N[n − p + 1, n−
p + q]. Hence for all r satisfying (3.14) at least one subset E can be found for
which Q(A3, A1) = nr/n2 = γ123.

The second case is the one where p, q, r satisfy

nq ≤ n(p + q + r − n) ≤ n(q + r)− qr ,
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or, equivalently,
n(n − r) ≤ np ≤ n2 − qr . (3.16)

We now define

A1 = E ∪N[2n + r + 1, 3n] ,
A2 = Ec ∪N[2n − q + r + 1, 2n + r] , (3.17)
A3 = N[n − q + r + 1, 2n − q + r] ,

with E a subset with cardinality r of N[1, n− q + r] and Ec = N[1, n− q + r] \ E.
Ec has cardinality (n− q). From (3.17) it immediately follows that Q(A2, A3) =
nq/n2 = β123 and Q(A3, A1) = nr/n2 = γ123. Depending upon the choice of
E we obtain that Q(A1, A2) can vary from n(n − r)/n2 when E = N[1, r] to
(n(n − r) + r(n − q))/n2 = (n2 − qr)/n2 when E = N[n − q + 1, n − q + r]. In
particular, for all p satisfying (3.16) at least one subset E can be found for which
Q(A1, A2) = np/n2 = α123.

Note that, as TP-transitivity implies dice-transitivity, a 3-dimensional TP-
transitive probabilistic relation with rational elements can also be generated by
the standard triplets constructed in Theorem 3.4.7 which are in general differ-
ent from the standard triplets obtained from Proposition 3.4.4. The generated
TM-transitive standard triplets, however, are the same for both constructions.
A graphical representation of the two constructions for TM-transitive triplets,
corresponding to (3.8) and (3.9), is shown in Figure 3.2.

1 1

n − q

q

q

n − q
n − r

A1

A2

A3

A2

3n
n − r

n
n

3n

r r

(3.9)

A2

A3

A1

A3

A1A1

(3.8)

Figure 3.2: Two constructions for TM-transitive triplets.

3.5 Dice-transitivity revisited
3.5.1 The probabilistic sum as an upper bound function
The function x + y − xy is generally known as the probabilistic sum. When
comparing the upper bound functions for TP-transitivity and dice-transitivity,
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we see they are very similar. Indeed, they both can be seen as a probabilistic
sum, upper bound function UP uses as arguments α and β while upper bound
function UD uses β and γ. Once this is observed, an immediate question pops
up with what type of relations the upper bound function UPD(α, β, γ) = α +
γ −αγ, in other words the probabilistic sum of α and γ, is associated. In this
section, we give a more general result concerning commutative quasi-copulas,
which will also answer the above question.

We start by stating the following interesting fact about probabilistic rela-
tions.

Proposition – 3.5.1: For any probabilistic relation Q = [qi j] and for any
[0, 1]2 → [0, 1] mapping g ≤ min, it holds that

(∀ (i, j, k)) (qik ≥ g(qi j, q jk)∨ qki ≥ g(qk j, q ji)) .

Proof:
Suppose, for some i, j, k it holds that qik < g(qi j, q jk). We will prove that this
implies qki > g(qk j, q ji). We find qki > g(qk j, q ji) ⇔ 1 − qik > g(1 − q jk, 1 −
qi j) ⇔ qik < 1 − g(1 − q jk, 1 − qi j). As g ≤ min, we have that g(qi j, q jk) ≤
1 − g(1 − q jk, 1 − qi j) and as qik < g(qi j, q jk) we indeed obtain the desired
result.

Note that the above proposition holds in particular for any quasi-copula g
and any t-norm g. A graphical interpretation can be given by observing the
following graphs, which we will call g-graphs: for any 3 elements a, b, c from
a set of alternatives that generates a probabilistic relation Q = [qi j], consider a
graph with nodes a, b and c. An arc from node i to j is drawn whenever it holds
that qi j ≥ g(qik, qk j), i, j ∈ {a, b, c}, i 6= j. We call such a graph (with 3 nodes)
a g-graph corresponding to 3 alternatives. The above proposition then says
that all g-graphs, with g ≤ min, obtained from m-dimensional probabilistic
relations, have at least one arc between any two nodes.

Before continuing, we first prove a useful lemma concerning commutative
quasi-copulas.

Lemma – 3.5.2: When g is a commutative quasi-copula, it holds that α +
β − 1 + g(π1(1 −α, 1 −β)) ≤ α + γ − 1 + g(π2(1 −α, 1 − γ)) ≤ β + γ − 1 +
g(π3(1 − β, 1 − γ)) ≤ α + β − g(π4(α, β)) ≤ α + γ − g(π5(α, γ)) ≤ β + γ −
g(π6(β, γ)). Here, πi(x, y) can be substituted by (x, y) or (y, x).

Proof:
As g is a quasi-copula, it holds that g is 1-Lipschitz and increasing, which im-
plies that g(x1, y1) − g(x2, y2) ≤ x1 − x2 + y1 − y2, for any 0 ≤ x2 ≤ x1 ≤ 1
and 0 ≤ y2 ≤ y1 ≤ 1. As g is commutative, we only need to prove the
statements for one specific choice of πi, 1 ≤ i ≤ 6. Let x1 = x2 = x, then
g(x, y1) − g(x, y2) ≤ y1 − y2. Choosing (x, y1, y2) = (1 − α, 1 − β, 1 − γ)
and (x, y1, y2) = (1 − γ, 1 −α, 1 − β) proves the first two inequalities while
choosing (x, y1, y2) = (α, γ, β) and (x, y1, y2) = (γ, β,α) proves the last two
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inequalities. The third inequality follows from the fact that g is a quasi-copula
and therefore g ≤ min: β + γ − 1 + g(1 −β, 1 − γ) ≤ β ≤ α + β − g(α, β).

We start now by showing that cycle-transitivity w.r.t. U(α, β, γ) = β + γ −
g(β, γ) is equivalent to the condition that all the g-graphs have at least 4 arcs.

Proposition – 3.5.3: A probabilistic relation Q = [qi j] is cycle-transitive
w.r.t. the upper bound function U(α, β, γ) = β +γ − g(β, γ), with g a commu-
tative quasi-copula, if and only if

(∀ (i, j, k)) (∃ (i′, j′, k′) = π(i, j, k))
(qi′k′ ≥ g(qi′ j′ , q j′k′) ∧ qk′ i′ ≥ g(qk′ j′ , q j′i′)) , (3.18)

where π(i, j, k) represents a permutation of (i, j, k).
Proof:

For any (i, j, k), condition (3.18) is equivalent to the following condition, for an
arbitrary loop direction:

α + β + g(1−α, 1 −β)− 1≤α + β + γ − 1≤α + β − g(α, β) ∨
α + γ + g(1 −α, 1 − γ) − 1≤α + β + γ − 1≤α + γ − g(α, γ) ∨
β + γ + g(1−β, 1 − γ) − 1≤α + β + γ − 1≤β + γ − g(β, γ) .

Due to Lemma 3.5.2, the above condition is equivalent to α + β + g(1−α, 1 −
β)− 1 ≤ α + β + γ − 1 ≤ β + γ − g(β, γ).

The proposition below shows that cycle-transitivity w.r.t. the upper bound
function U(α, β, γ) = α +γ − g(α, γ) is equivalent to the condition that all the
g-graphs have at least 5 arcs.

Proposition – 3.5.4: A probabilistic relation Q = [qi j] is cycle-transitive
w.r.t. the upper bound function U(α, β, γ) = α +γ − g(α, γ), with g a commu-
tative quasi-copula, if and only if

(∀ (i, j, k)) (∃ (i′, j′, k′) = π(i, j, k))
( qi′k′ ≥ g(qi′ j′ , q j′k′)∧ qk′ i′ ≥ g(qk′ j′ , q j′i′) ∧

qi′ j′ ≥ g(qi′k′ , qk′ j′)∧ q j′i′ ≥ g(q j′k′ , qk′i′)

)

, (3.19)

where π(i, j, k) represents a permutation of (i, j, k).
Proof:

Due to Lemma 3.5.2, for any (i, j, k), condition (3.19) is equivalent to the fol-
lowing condition, for an arbitrary loop direction:

α + γ + g(1 −α, 1 − γ)− 1≤α + β + γ − 1≤α + β − g(α, β) ∨
β + γ + g(1−β, 1 − γ)− 1≤α + β + γ − 1≤α + β − g(α, β) ∨
β + γ + g(1−β, 1 − γ)− 1≤α + β + γ − 1≤α + γ − g(α, γ) .

Finally, again due to Lemma 3.5.2, the above condition is equivalent to
α + γ + g(1 −α, 1 − γ) − 1 ≤ α + β + γ − 1 ≤ α + γ − g(α, γ) .
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To conclude this subsection, we show that cycle-transitivity w.r.t. an upper
bound function U(α, β, γ) = α +β− g(α, β) is equivalent to the condition that
all the g-graphs have 6 arcs.

Proposition – 3.5.5: A probabilistic relation Q = [qi j] is cycle-transitive
w.r.t. the upper bound function U(α, β, γ) = α +β− g(α, β), with g a commu-
tative quasi-copula, if and only if

(∀ (i, j, k)) (qi j ≥ g(qik, qk j)) . (3.20)

Proof:
It follows directly from Lemma 3.5.2 that (3.20) is equivalent to β + γ + g(1 −
β, 1 − γ)− 1 ≤ α + β + γ − 1 ≤ α + β − g(α, β).

As a final note, we wish to remark that the framework of cycle-transitivity
allows for very elegant equivalent conditions to (3.18), (3.19) and (3.20).

3.5.2 Constructing dice
As follows from the constructional proof of Theorem 3.4.7, more specifically
from (3.15) and (3.17), to generate any 3-dimensional dice-transitive relation,
with rational elements, by means of a standard triplet, the cardinality of one
of the dice can always be chosen to be one. In this subsection we show that
the construction can be simplified even more. To achieve this further simplifi-
cation, we need to introduce the notion of blocks of integers corresponding to
a given standard triplet. Consider a standard triplet for which the three dice
have n1, resp. n2, resp. n3 faces. Partition N[1, n1 + n2 + n3] into the maximal
sets Ni for which it holds that they contain successive integers that all appear
on the same dice. It is obvious that the fewer the number of blocks are for a
given standard triplet, the simpler the triplet. Calculating the generated prob-
abilistic relation, for example, can be done faster if there are less blocks. Fig-
ure 3.2, for example, shows two triplets, each being composed out of 5 blocks.
For 3-dimensional TM-transitive relations it therefore holds that they can be
generated by a triplet consisting of at most 5 blocks.

Example – 3.5.6:
Consider as another example the standard triplet consisting of

A1 = {2, 3, 4, 8, 9, 12, 13, 14, 15, 16} , A2 = {1, 6, 7} , A3 = {5, 10, 11} .

The above triplet thus consists of the following seven blocks:
N[1, 1], N[2, 4], N[5, 5], N[6, 7], N[8, 9], N[10, 11], N[12, 16]. J

Using the above definition, we are now able to state the following proposition.

Proposition – 3.5.7: All 3-dimensional dice-transitive probabilistic rela-
tions with rational elements can be generated by a standard triplet consisting
of at most seven blocks. Furthermore, the cardinality of one of the dice can be
chosen to be 1.
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Proof:
Assume we have been given a dice-transitive graph with 3 nodes and the
weights of a certain loop given by

α =
p
n ≤ β =

q
n ≤ γ =

r
n . (3.21)

Note that the arcs don’t necessarily carry those weights in that specific order.
For the construction we must have p, q, r, n such that n is a divisor of qr.
These conditions are always satisfied when multiplying the 4 given numbers
by n. We thus obtain: p′ = pn, q′ = qn, r′ = rn and n′ = nn. It now holds that
p′/n′ = p/n, q′/n′ = q/n, r′/n′ = r/n and q′r′/n′ = qr ∈ N. For the remainder
of the proof we will drop the accents and assume that n is a divisor of qr.
Furthermore, given α, β, γ, we can assume that

βγ ≤ α + β + γ − 1 ≤ β + γ −βγ, (3.22)
because if this property does not hold it will hold for the other loop direction
where γ′ = 1 −α, β′ = 1 −β, α′ = 1 − γ and we can use these values instead
(dropping the accents).

For simplicity, let us assume that we can relabel the indices such that q23 =
β and q31 = γ. If that’s impossible, we can relabel the indices such that q23 = γ

and q31 = β and the proof is then completely analogous. We will prove that
for any α = q12 with a value between

(n − r)(n − q)
n2 = (1 −β)(1 − γ) (3.23)

and
min

(

(n − r)n + r(n − q)
n2 , β

)

= min(1 −βγ, β) , (3.24)

we can construct a standard triplet consisting of at most 7 blocks. Note that
the condition (3.23) ≤ α ≤ (3.24) is equivalent to (3.22). For the upper bound
of α we must make sure it is not higher than β, hence the minimum operator
in (3.24).

We note that when α equals the lower bound (3.23) or the upper bound
(3.24), it holds that αn ∈ N (because we can assume qr/n ∈ N), so both these
bounds already represent a possible value for p/n = α (the minimal and max-
imal value).

All values for α = p/n located between the lower bound (3.23) and the
bound

(1 −β)(1 − γ) + max(min(β, 1 −β), min(γ, 1 − γ)), (3.25)
can be generated by a standard triplet with no more than 7 blocks. Indeed,
suppose that α = (3.23) + l/n, with 0 ≤ l ≤ min(r, n − r). Then the standard
triplet below generates this dice-transitive relation.

A1 = N[1, r − l] ∪N[n + r − q − l + 1, n + r − q]∪
N[n + r − q + 2, 2n − q + 1 − l] ∪N[2n + 2 − l, 2n + 1] ,

A2 = N[r + 1 − l, n + r − q − l] ∪N[2n − q + 2 − l, 2n + 1 − l] ,
A3 = {n + r − q + 1} .
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Secondly, suppose that α = (3.23) + l/n, with 0 ≤ l ≤ min(q, n − q). Then the
standard triplet below generates the dice-transitive relation.

A1 = N[l + 1, r + l] ∪N[n + r − q + 2 + l, 2n − q + l + 1] ,
A2 = N[1, l] ∪N[r + l + 1, n + r − q]∪

N[n + r − q + 2, n + r − q + 1 + l] ∪N[2n − q + l + 2, 2n + 1] ,
A3 = {n + r − q + 1} .

Similarly, all values for α = p/n located between the upper bound (3.24) and
the (lower) bound

1 −βγ − max(min(β, 1 −β), min(γ, 1 − γ)), (3.26)

can be generated by a standard triplet consisting of at most 7 blocks. Indeed,
suppose that α = 1 −βγ − l/n, with 0 ≤ l ≤ min(r, n − r). Then the standard
triplet below generates the dice-transitive relation.

A1 = N[1, l] ∪N[n − q + l + 1, n + r − q]∪
N[n + r − q + 2, n + r − q + l + 1] ∪N[n + r + l + 2, 2n + 1] ,

A2 = N[l + 1, n − q + l] ∪N[n + r − q + l + 2, n + r + l + 1] ,
A3 = {n + r − q + 1} .

Finally, suppose that α = 1 −βγ − l/n, with 0 ≤ l ≤ min(q, n − q). Then the
standard triplet below generates the dice-transitive relation.

A1 = N[n − q − l + 1, n + r − q − l] ∪N[n + r − l + 2, 2n− l + 1] ,
A2 = N[1, n − q − l] ∪N[n + r − q − l + 1, n + r − q]∪

N[n + r − q + 2, n + r − l + 1] ∪N[2n − l + 2, 2n + 1] ,
A3 = {n + r − q + 1} .

Note that all the above standard triplets, constructed for each of the four cases,
consist of at most 7 blocks. It remains to be proven that all valid values for
α = p/n satisfying (3.22) are within the union of the two intervals. We divide
all possibilities into three cases.
Case 1: β, γ ≤ 1/2.
The border (3.25) now becomes (1 −β)(1 − γ) + γ. As α ≤ γ ≤ (1 − β)(1 −
γ) + γ, α is always situated between the borders (3.23) and (3.25).
Case 2: β, γ ≥ 1/2.
For this case, we will prove that [(3.23), (3.24)] = [(3.23), (3.25)]∪ [(3.26), (3.24)],
which implies that the construction is possible for all valid values of α. We
must therefore prove that (3.25) ≥ (3.26). This is equivalent to

(1 −β)(1− γ) + (1 −β) ≥ 1 −βγ − (1 −β) ,

which is equivalent to

−2 + 3β + γ(1 − 2β) ≤ 0 .

We now determine an upper bound for the left-hand side of the above inequal-
ity. If we assume γ to be a constant between 1/2 and 1 then we see that this
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function of β is strictly increasing. To obtain the maximum value of the left-
hand side, we therefore always take the highest possible value for β, which is
clearly given by β = γ. We now obtain the following function in γ which we
want to maximize:

−γ2 + 2γ − 1 = −(1 − γ)2 .

As the above function is always smaller or equal to zero, it indeed holds that
(3.25) ≥ (3.26).
Case 3: β < 1/2, γ > 1/2.

Case 3.1: β ≥ 1 − γ.
As α ≤ β ≤ (1 − β)(1 − γ) + β, we obtain that α is always situated between
the borders (3.23) and (3.25).

Case 3.1: 1 − γ > β.
Because β < 1 − γ we have that β < (1 − β)(1 − γ) + 1 − γ and this again
implies that α is situated between the borders (3.23) and (3.25).

3.6 Towards higher dimensions
In [75], besides the utility model, which yields probabilistic relations that have
strong transitivity properties, also the so-called multidimensional model is dis-
cussed. Moreover, it has been shown that the probabilistic relations gener-
ated by this multidimensional model are TL-transitive, and conversely, all TL-
transitive probabilistic relations on a universe of dimension n ≤ 5 can be gen-
erated by a multidimensional model [10, 76]. By analogy, as far as our model
is concerned, the question arises whether the reverse property, which has been
proven in Theorem 3.4.7 to hold for 3-dimensional probabilistic relations with
rational elements, extends to higher-dimensional probabilistic relations. The
question must be answered in negative sense, as follows from the next theo-
rem.

Theorem – 3.6.1: Not all 4-dimensional dice-transitive probabilistic rela-
tions (with rational elements) can be generated by a dice model.

Proof:
We will construct a set of graphs of which the associated probabilistic rela-
tion is dice-transitive but for which there does not exist a collection of dice
(A1, A2, A3, A4) that generates it. We will use the graph of Figure 3.3, which
shows explicitly that Q(A1, A3) = e = 0 and Q(A2, A4) = f = 0. Obviously, it
holds that a, b, c, d ∈ [0, 1]. In this graph there are four subgraphs with 3 nodes.
The condition of dice-transitivity has to hold for each subgraph. We therefore
have the following four conditions that must hold:















0 ≤ d − a ≤ 1 − a(1 − d) , for triplet (A1, A2, A4) ,
0 ≤ d − c ≤ 1 − c(1 − d) , for triplet (A1, A3, A4) ,
0 ≤ c − b ≤ 1 − b(1 − c) , for triplet (A2, A4, A3) ,
0 ≤ a − b ≤ 1 − b(1 − a) , for triplet (A2, A1, A3) ,
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a

b 6= 0

c

d 6= 1

A1 A2

A4 A3

f = 0

e = 0

Figure 3.3: Dice-transitive probabilistic relations that cannot be generated by a dice
model.

which is equivalent to
b ≤ c ≤ d ∧ b ≤ a ≤ d . (3.27)

Note that these conditions can easily be satisfied. We now prove that, when
e = 0, f = 0, when the conditions (3.27) are fulfilled and when

b 6= 0 ∧ d 6= 1 , (3.28)

we have examples of graphs that are dice-transitive but that cannot be gener-
ated by a collection of 4 dice.

Let us assume that such a collection (A1, A2, A3, A4) does exist and let a1 =
max A1 and a2 = max A2. We have two cases. In the first case we have a1 >
a2 from which it follows that b = 0. In the second case we have a1 ≤ a2
from which it follows that d = 1. In the first case we used the fact that e =
0 and in the second case that f = 0. These two cases represent all possible
situations and (3.28) does not hold in either case. Therefore, there exist no
standard quartets that correspond to the dice-transitive graph from Figure 3.3
having the following properties:

b ≤ c ≤ d , b ≤ a ≤ d , b 6= 0 , d 6= 1 , e = 0 , f = 0 . (3.29)

Again, the conditions (3.29) can easily be satisfied.
Numerous attempts have been made to obtain the exact characterization

of the transitivity of 4-dimensional dice models. Most of these attempts con-
cerned finding more restrictive upper bounds such that all known 6-tuples of
probabilities that were known to be generated by 4-dimensional dice models
satisfied the imposed conditions. These attempts were mostly unsatisfactory
and we therefore will not report on them.

The result from Proposition 3.5.7, however, seems to suggest a general rule.
First note that any 2-dimensional dice-transitive relation with rational elements
can be generated by two dice of which one dice only has one face. The general
rule could be that any m-dimensional probabilistic relation generated by an
m-dimensional dice model can always be generated by an m-dimensional stan-
dard collection composed of at most 2m − 1 blocks and for which one dice can
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be chosen to have only one face. However, the proposition below shows that
this generalization cannot be done.

Proposition – 3.6.2: Not all 4-dimensional dice-transitive relations with
rational elements can be generated by a dice model of which at least one dice
has only one face.

Proof:
We will show that the dice-transitive probabilistic relation Q = [qi j] with ele-
ments q12 = 7/9, q13 = 1/2, q14 = 8/9, q23 = 0, q24 = 4/9 and q34 = 3/4 can
be generated by a 4-dimensional dice model but cannot be generated by a dice
model in which one dice has only one face.

First of all, it is easily verified that the standard quartet (A1, A2, A3, A4),
with

A1 = {4, 11, 12} , A2 = {1, 5, 6} , A3 = {7, 8, 9, 13} , A4 = {2, 3, 10} ,

generates the above probabilistic relation and that the above four dice each
consists of more than 1 block. We now consider another standard quartet
(A′

1, A′
2, A′

3, A′
4) that generates the same probabilistic relation and show for

each dice that it must consist of more than one block and, consequently, have
more than one face.
Case 1: #A′

1 = 1.
It must then hold that q23 ≥ q21q13, which is equivalent to 0 ≥ 1/9.
Case 2: #A′

2 = 1.
It must then hold that q41 ≥ q42q21, which is equivalent to 1/9 ≥ 10/81.
Case 3: #A′

3 = 1.
It must then hold that q41 ≥ q43q31, which is equivalent to 1/9 ≥ 1/8.
Case 4: #A′

4 = 1.
It must then hold that q23 ≥ q24q43, which is equivalent to 0 ≥ 1/9.

We can, however, state sufficient conditions on a 4-dimensional probabilis-
tic relation such that it can be generated by a 4-dimensional dice model. We
will now show that any 4-dimensional TM-transitive probabilistic relation with
rational elements can be generated by a dice model. We start by showing that
in all TM-transitive digraphs with 4 nodes, corresponding to a 4-dimensional
probabilistic relation, there exists a weighted arc such that its weight and the
weight of the arc in the reversed direction are the middle weight in the loops of
all triplets that contain this weighted arc (or the arc in the reversed direction).

Lemma – 3.6.3: For any 4-dimensional TM-transitive probabilistic relation
Q = [qi j], there exists a permutation (p1, p2, p3, p4) = π(1, 2, 3, 4) such that

qp1 p2 = median(qp2p3 , qp3 p1 , qp1 p2) ∧
qp1 p2 = median(qp2p4 , qp4 p1 , qp1 p2) . (3.30)
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Proof:
The proof consists of considering all possible situations. In each possible sit-
uation, we will give values for p1 and p2 such that (3.30) is satisfied. With-
out any loss of generality we can assume that q12 = β123. This implies that
q23 = 1 − q31.
Case 1: q12 = β124.
Choose p1 = 1, p2 = 2.
Case 2: q24 = β124 — implying q12 = 1 − q41.

Case 2.1: q24 = β324.
Choose p1 = 2, p2 = 4.
Case 2.2: q32 = β324 — implying q24 = 1 − q43.

Case 2.2.1: q14 = β143 — implying q43 = 1 − q31.
As β124 = q24 = q34 = q31 = q32 = β324, we choose p1 = 2, p2 = 4.
Case 2.2.2: q43 = β143 — implying q31 = 1 − q14.
As β324 = q32 = q31 = q41 = q21 = β321, we choose p1 = 2, p2 = 3.
Case 2.2.3: q31 = β143 — implying q14 = 1 − q43.
As β123 = q12 = q14 = q34 = q24 = β124, we choose p1 = 1, p2 = 2.

Case 2.3: q43 = β324 — implying q32 = 1 − q24.
Case 2.3.1: q43 = β143.
Choose p1 = 3, p2 = 4.
Case 2.3.2: q14 = β143 — implying q43 = 1 − q31.
As β124 = q24 = q23 = q13 = q43 = β324, we choose p1 = 2, p2 = 4.
Case 2.3.3: q31 = β143 — implying q14 = 1 − q43.
In this case we obtain the following 4 equalities: q23 = 1 − q31, q12 =
1− q41, q32 = 1− q24, q14 = 1− q43. They imply that there exist a, b ∈ [0, 1]
such that q12 = a, q23 = b, q34 = a, q14 = a, q13 = b and q24 = b, with
min(a, 1− a) ≤ b ≤ max(a, 1− a) and min(b, 1− b) ≤ a ≤ max(b, 1− b).
For (3.30) not to be satisfied, the above inequalities must be strict inequal-
ities:

a > min(b, 1 − b) , b > min(a, 1 − a) ,
1 − a > min(1 − b, b) , 1 − b > min(1 − a, a) .

Firstly, assume 1 − b ≤ b. The aforementioned strict inequalities then
imply 1 − b < a ∧ 1 − b < 1 − a, which contradicts 1 − b > min(a, 1 − a).
Lastly, assume 1 − b > b. We then obtain b < a ∧ b < 1 − a, which in turn
contradicts b > min(a, 1 − a).

Case 3: q41 = β124 — implying q12 = 1 − q24.
Case 3.1: q14 = β143.
Choose p1 = 1, p2 = 4.
Case 3.2: q43 = β143 — implying q14 = 1 − q31.

Case 3.2.1: q43 = β324.
Choose p1 = 3, p2 = 4.
Case 3.2.2: q24 = β324 — implying q32 = 1 − q43.
As β124 = q41 = q31 = q32 = q34 = β134, we choose p1 = 1, p2 = 4.
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Case 3.2.3: q32 = β324 — implying q24 = 1 − q43.
This case is completely analogous to Case 2.3.3.

Case 3.3: q31 = β143 — implying q14 = 1 − q43.
Case 3.3.1: q43 = β324 — implying q32 = 1 − q24.
As β143 = q31 = q32 = q42 = q12 = β123, we choose p1 = 1, p2 = 3.
Case 3.3.2: q24 = β324 — implying q32 = 1 − q43.
As β124 = q41 = q43 = q23 = q13 = β134, we choose p1 = 1, p2 = 4.
Case 3.3.3: q32 = β324 — implying q24 = 1 − q43.
As β123 = q12 = q42 = q43 = q41 = β124, we choose p1 = 1, p2 = 2.

Proposition – 3.6.4: Any 4-dimensional TM-transitive probabilistic relation
with rational elements Q = [qi j] can be generated by a standard quartet.

Proof:
Lemma 3.6.3 implies that for any 4-dimensional probabilistic TM-transitive re-
lation Q = [qi j], the indices i, j can be permuted such that q12 = β123 and
q12 = β124. We will refer to q12 as β. Furthermore, the indices can be chosen
such that q24 ≥ q41. We will refer to q24 as γ and therefore to q41 as 1 − γ. The
weights q23 and q31 will be referred to as γ′ and 1 − γ′, respectively. Note that
we cannot assume, without loss of generality, that γ′ ≥ 1 − γ′, however we
will not need such an assumption. As the relation has rational elements, we
can, as before, find a common denominator n for the values qi j. Let β = q/n,
γ = r/n and γ′ = r′/n.

We now consider the following standard quartets:

A1 = N[r + r′ + q + 1, r + r′ + q + n] ,
A2 = N[r + r′ + 1, r + r′ + q] ∪

N[r + r′ + q + n + 1, 2n + r + r′] ,
A3 = E1 ∪ E2 ,
A4 = Ec

1 ∪ Ec
2 .

(3.31)

Here, E1 is an r′-dimensional subset of N[1, r + r′] and Ec
1 = N[1, r + r′] \ E1.

Note that Ec
1 is r-dimensional. On the other hand, E2 is an (n− r′)-dimensional

subset of N[2n + r + r′ + 1, 4n] and Ec
2 = N[2n + r + r′ + 1, 4n] \ E2. Hence Ec

2
is (n − r)-dimensional.

For the probabilistic relations generated from the quartets (3.31), it is clear
that q12 = q/n = β, q23 = q13 = r′/n = γ′ and q24 = q14 = r/n = γ. The only
remaining value is q43. Depending upon the choice of E1 and E2, the possible
values for q43 are those for which the double inequality below holds:

(n − r)r′ ≤ n2q43 ≤ n(n − r) + rr′ . (3.32)

We now distinguish the three possible cases for β243 and verify that all possible
values of q43 satisfy the double inequality (3.32).
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Case 1: q43 = β243.
This implies q32 = 1− q24 which is equivalent to γ = γ′ or, equivalently, r = r′.
Thus 1 − γ ≤ q43 ≤ γ, or equivalently n(n − r) ≤ n2q43 ≤ nr. As r and r′ are
smaller or equal to n we have that all values q43 for this case satisfy (3.32).
Indeed, n(n − r) + r2 ≥ nr ⇔ n(n − r) ≥ r(n − r), which is always satisfied.
Similarly, (n − r)r ≤ (n − r)n is also always satisfied.
Case 2: q32 = β243.
This implies q43 = 1 − γ = (n − r)/n and (3.32) is therefore satisfied.
Case 3: q24 = β243.
This implies q43 = γ′ = r′/n and (3.32) is again satisfied.
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T he great tragedy of science � the slaying of a
beautiful hypothesis by an ugly fact.

— THOMAS HUXLEY
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The discrete dice model, which was discussed in the previous chapter, es-
sentially amounts to the pairwise comparison of a collection of independent
discrete random variables that are uniformly distributed on finite integer mul-
tisets. This pairwise comparison results in a probabilistic relation that exhibits
a particular type of transitivity, called dice-transitivity. In this chapter, the dis-
crete dice model is generalized with the purpose of pairwisely comparing in-
dependent discrete or continuous random variables with arbitrary probability
distributions. It is shown that the probabilistic relation generated by a collec-
tion of arbitrary independent random variables is still dice-transitive. Inter-
estingly, this probabilistic relation can be seen as a graded alternative to the
concept of stochastic dominance [5, 37, 59, 60, 62]. Furthermore, when the
marginal distributions of the random variables belong to the same parametric
family of distributions, the probabilistic relation exhibits interesting types of
isostochastic transitivity, such as multiplicative transitivity. Finally, the proba-
bilistic relation generated by a collection of independent normal random vari-
ables is proven to be moderately stochastic transitive.

The outline of this chapter is as follows. In Section 4.1 we introduce the con-
cept of a generalized discrete or continuous dice model and show that its prob-
abilistic relation can, for the case of independent r.v., be interpreted as a graded
alternative to the notion of stochastic dominance. Section 4.2 is concerned with
the characterization of the type of transitivity exhibited by probabilistic rela-
tions of generalized dice models. The remaining sections are then devoted to
the study of the influence particular choices of independent random variables
have on the transitivity of the generated probabilistic relation. In Section 4.3 we
focus on random variables with shifted distributions, in Section 4.4 on random
variables with distributions taken from certain parametric families of distribu-
tions, and in Section 4.5 special attention is paid to the case of normal random
variables. Most results from this chapter can be found in [18, 23, 25, 28].

4.1 Generalized dice models
Clearly, Definition 3.2.2 of the probabilistic relation Q of a discrete dice model
can be immediately extended to compare arbitrary random variables. Indeed,
any collection of r.v. (X1, X2, . . . , Xm) can, by means of the pairwise compari-
son of its components, serve as a source for generating an m-dimensional prob-
abilistic relation.

Definition – 4.1.1: Let (X1, X2, . . . , Xm) be a collection of m random vari-
ables, then the relation Q = [qi j] defined by

qi j = Prob{Xi > X j} +
1
2 Prob{Xi = X j} (4.1)

is a probabilistic relation. The collection of random variables is called a gener-
alized dice model.

The definition of Q = [qi j] implies that when the r.v. are coupled by abso-
lutely continuous copulas, the elements qi j can be computed from the bivariate
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joint cumulative distribution functions (c.d.f.) FXi ,X j as follows

qi j =
∫

x>y
dFXi,X j(x, y) +

1
2

∫

x=y
dFXi,X j(x, y) . (4.2)

In this chapter, however, we will consider independent random variables only.
The underlying copula is therefore the (absolutely continuous) product-copula
and therefore bivariate distributions can always be factorized into their uni-
variate marginal distributions. The case when the random variables are differ-
ently coupled will be considered in Chapter 6. If we want to further simplify
(4.2) for the case of independent r.v., it is appropriate to distinguish between
the following two cases.

Definition – 4.1.2: Let (X1, X2, . . . , Xm) be a collection of independent dis-
crete random variables, then the relation Q = [qi j] defined by

qi j = ∑
k>l

pXi(k)pX j(l) +
1
2 ∑

k
pXi(k)pX j(k) , (4.3)

with pXi the marginal probability mass function of Xi, is a probabilistic relation.
The collection of the discrete random variables is called a generalized discrete
dice model (with independent random variables).

Definition – 4.1.3: Let (X1, X2, . . . , Xm) be a collection of independent con-
tinuous random variables, then the relation Q = [qi j] defined by

qi j =
∫ +∞

−∞

fXi(x)

(

∫ x

−∞

fX j(y) dy
)

dx , (4.4)

with fXi the marginal probability density function of Xi, is a probabilistic re-
lation. The collection of continuous random variables is called a generalized
continuous dice model (with independent random variables).

Note that in the transition from the discrete to the continuous case, the sec-
ond contribution to qi j in (4.2) has disappeared in (4.4), since in the latter case
Prob{Xi = X j} = 0. Of course, the information contained in the probabilistic
relation is much richer than if for the pairwise comparison of Xi and X j we
would have used, for instance, only their expected values E[Xi] and E[X j].

In the discussion of generalized dice models, we will maintain the termi-
nology related to the original discrete dice model. A collection of dice will be
kept as a metaphor for a collection of random variables. Two dice Xi and X j,
taken from a collection of dice, are compared in terms of the quantity qi j for
which it holds that qi j = 1 − q ji. If qi j > 1/2, we still say that dice Xi (statis-
tically) wins from dice X j (denoted as Xi >s X j), and if qi j = 1/2, we say that
both dice are (statistically) indifferent (denoted as Xi =s X j).

An alternative concept for comparing two random variables is that of sto-
chastic dominance [59], which is particularly popular in financial mathematics.
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Definition – 4.1.4: A random variable Xi with c.d.f. FXi stochastically dom-
inates in first degree a random variable X j with c.d.f. FX j , denoted as Xi >1 X j,
if for all real t it holds that FXi(t) ≤ FX j(t), and the strict inequality holds for at
least one t.

The condition for first degree stochastic dominance is rather severe, as it
requires that the graph of the function FXi lies beneath the graph of the func-
tion FX j . The need to relax this condition has led to other types of stochastic
dominance, such as second degree and third degree stochastic dominance. We
will not go into more details here, since we just want to emphasize the follow-
ing relationship between first degree stochastic dominance and the winning
probabilities of a dice model.

Proposition – 4.1.5: For any two independent random variables Xi and X j
it holds that Xi >1 X j implies Xi >s X j.

Proof:
We first give the proof for continuous random variables. Suppose that Xi >1
X j, implying FXi(z) ≤ FX j(z), for any z ∈ R. Since FXi and FX j are right- or
left-continuous functions, it holds that FXi(z) < FX j(z), for any z ∈ I ⊆ R, for
at least one non-degenerated interval I. Therefore, we obtain

Prob{Xi > X j} =
∫ +∞

−∞

fXi(x)FX j(x)dx >
∫ +∞

−∞

fXi(x)FXi(x)dx =
1
2 .

We now give the proof for the case of discrete random variables. Suppose
Xi >1 X j. It is obvious that ∑k>l pXi(k)pXi(l) + 1/2 ∑k=l(pXi(k))2 = 1/2. As
Xi(k) ≤ X j(k), k ∈ Z, with a strict inequality for at least one k, we obtain
∑k>l pXi(k)pX j(l) + 1/2 ∑k=l pXi(k)pX j(k) > 1/2.

The relation >s therefore generalizes first degree stochastic dominance >1.
As the probabilistic relation of a dice model is a graded version of the crisp
relation >s, we can therefore interpret this relation as a graded alternative to
first degree stochastic dominance.

4.2 Transitivity of generalized dice models
One of the main results from Chapter 3 was the fact that the probabilistic rela-
tion generated by a dice model is dice-transitive. In this section, we prove that
the probabilistic relation generated by any generalized dice model, whether
discrete or continuous, with independent r.v. is at least dice-transitive. More
precisely, we proceed in two distinct steps: firstly, the discrete dice model is
generalized to cover the case of arbitrary discrete independent random vari-
ables, and, secondly, the generalization to arbitrary continuous independent
random variables is considered.

Theorem – 4.2.1: The probabilistic relation of a generalized discrete dice
model with independent random variables is dice-transitive.
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Proof:
First, we want to emphasize that the introduction of negative integers in the
multisets of a discrete dice model does not alter the transitivity. Let Xk be a
random variable of a generalized discrete dice model with independent r.v.,
and let In = [−n, n], with n > 0. We now approximate the random variable Xk
by a random variable X(n)

k which takes values in In with rational probabilities
only, in such a way that:

pX(n)
k

(−n) ∈ Q ∧ 0 ≤ Prob{Xk ≤ −n} − pX(n)
k

(−n) <
1

n2 ,

pX(n)
k

( j) ∈ Q ∧ 0 ≤ Prob{Xk = j} − pX(n)
k

( j) <
1

n2 , ∀ j ∈ Im \ {−n, n} ,

pX(n)
k

(n) = 1 −
n−1
∑

i=−n
pX(n)

k
(i) .

It is clear that such an approximation always exists, since the set of rationals Q

is dense in the set of reals R. From the above inequalities, it also follows that

pX(n)
k

(n)− Prob{Xk ≥ n} <
2
n .

Since we can take n as large as we like, the generalized discrete dice model can
be approximated with arbitrary precision, i.e. limn→+∞ X(n)

k = Xk. For any
n ∈ N, the probabilistic relation generated by X(n)

k can also be generated by a
discrete dice model in which the dice have a finite number of faces, each face
containing one integer, and the probability of a particular face showing up in
a random roll of the dice being for each face a rational number. Bringing all
rational probabilities to a (least) common denominator, it suffices to duplicate,
depending on the numerator values, each face a number of times in order to
obtain an equivalent discrete dice model in the sense of Chapter 3 (see Sec-
tion 3.3). As all such discrete dice models are dice-transitive it follows that all
gereralized discrete dice models are dice-transitive.

We now execute the second step mentioned before, by considering contin-
uous dice models with independent r.v.

Theorem – 4.2.2: The probabilistic relation of a generalized continuous dice
model with independent random variables is dice-transitive.

Proof:
Let Xk be a random variable of a generalized continuous dice model with in-
dependent r.v. and with probability density function fXk . We partition R into
an infinite but countable number of segments, namely R = ∪+∞

n=−∞
δn, with

δn = [nδ, (n + 1)δ[ and arbitrary (but fixed) δ > 0. We approximate the contin-
uous random variable Xk by a discrete random variable X(δ)

k with probability
mass function p(δ)

Xk
given by

p(δ)
Xk

(i) =
∫ (i+1)δ

iδ
fXk(x) dx , i ∈ Z .
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Since δ can be chosen as small as one likes, the generalized continuous dice
model can be approximated with arbitrary precision by a generalized discrete
dice model, and, in particular, its probabilistic relation Q can be (elementwise)
approximated by the dice-transitive probabilistic relation Q(δ) of a generalized
discrete dice model. Indeed, we have

qi j =
∫ +∞

−∞

fXi(x)

(

∫ x

−∞

fX j(y) dy
)

dx

and
qδ

i j = ∑k ∑l<k
∫ (k+1)δ

kδ fXi(x)
(

∫ (l+1)δ
lδ fX j(y) dy

)

dx +

1
2 ∑k

∫ (k+1)δ
kδ fXi(x)

(

∫ (k+1)δ
kδ fX j(y) dy

)

dx .
Let now

µδ = max
k

(

∫ (k+1)δ

kδ
fXi(x) dx,

∫ (k+1)δ

kδ
fX j(y) dy

)

.

Then

qi j − qδ
i j = ∑k

∫ (k+1)δ
kδ fXi(x)

(

∫ x
kδ fX j(y) dy− 1

2
∫ (k+1)δ

kδ fX j(y) dy
)

dx
≤ 1

2 ∑k
∫ (k+1)δ

kδ fXi(x) dx
∫ (k+1)δ

kδ fX j(y) dy
≤ 1

2 ∑k µ2
δ .

Completely analogous to the above, we obtain q ji − qδ
ji ≤ 1/2 ∑k µ2

δ and thus
|qi j − qδ

i j| ≤ 1/2 ∑k µ2
δ . When letting δ become arbitrarily small, we then obtain

limδ→0 |qi j − qδ
i j| ≤ limδ→0

1
2 ∑k µ2

δ

= 1
2 (limδ→0 µδ)(limδ→0 ∑k µδ)

≤ limδ→0 µδ = 0 .
The last step was obtained by considering that, when δ → 0, µδ is arbitrary
small (since we are considering continuous r.v.), and it then holds that

lim
δ→0

(

lim
k→+∞

k
∑

l=−k
µδ

)

≤ lim
k→+∞

k
∑

l=−k

1
k = lim

k→+∞

2k + 1
k = 2 .

Finally, Theorem 4.2.1 implies that these probabilistic relations are indeed dice-
transitive.

To conclude this section, let us reformulate what we have obtained. The
discrete dice model with independent random variables that are uniformly
distributed on integer multisets is, as far as the transitivity of the generated
probabilistic relation is concerned, a generic model, in the sense that all gener-
alized dice models with independent r.v. generate dice-transitive probabilistic
relations.

Of course, if the random variables of a generalized dice model possess dis-
tribution functions that obey certain constraints, then it is likely that the tran-
sitivity of the generated probabilistic relation is of a stronger type than dice-
transitivity. In the remaining sections of this chapter, we will discuss certain of
these constraints and their influence on the type of transitivity.
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4.3 Dice with shifted distributions
As a first example of generalized dice models in which certain constraints are
imposed on the distribution functions of the random variables, we consider
the case where these r.v. possess cumulative distribution functions that are
translated copies of a generic cumulative distribution function FX. We will
investigate the transitivity of the probabilistic relations generated by such re-
stricted dice models and the notion of isostochastic transitivity, introduced in
Section 2.4.4, will naturally come to the foreground.

Proposition – 4.3.1: Let the c.d.f. FXi of the independent random variables
Xi, i = 1, . . . , m, of a generalized dice model be arbitrary translations of the
same c.d.f. FX, i.e. FXi(x) = FX(x − ti) for all i with arbitrary real ti. If for all
u 6= v for which the equality

∫ +∞

−∞

FX(x − u) dFX(x) =
∫ +∞

−∞

FX(x − v) dFX(x) (4.5)

holds, the integrals are either both 0 or both 1, then the probabilistic relation
generated by the random variables is isostochastic transitive w.r.t. a function g
that solely depends upon the generic c.d.f. FX.

Proof:
We can assume without loss of generality that the indices of three random vari-
ables Xi, X j, Xk are such that qi j ≥ 1/2 and q jk ≥ 1/2. The value of qi j is
computed as follows

qi j =
∫ +∞

−∞

FX(x − t j) dFX(x − ti) =
∫ +∞

−∞

FX(x + ti − t j) dFX(x) .

Since FX is nondecreasing and the last integral is equal to 1/2 only when ti = t j,
it is clear that qi j ≥ 1/2 implies ti ≥ t j. Similarly, it holds that

q jk =
∫ +∞

−∞

FX(x + t j − tk) dFX(x) ,

with t j ≥ tk. Finally,

qik =
∫ +∞

−∞

FX(x + ti − tk) dFX(x) ,

and since ti − tk = (ti − t j) + (t j − tk), we immediately obtain that

qik ≥ max(qi j, q jk) ≥
1
2 . (4.6)

Let us first assume that qi j 6= 1 and q jk 6= 1. Then, due to the extra condition
concerning (4.5), the differences ti − t j and t j − tk are unique, and so is their
sum ti − tk. If qi j = 1 or q jk = 1, then, according to (4.6), also qik = 1. This
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proves that qik is a function of qi j and q jk on [1/2, 1]2, which we denote as qik =
g(qi j, q jk) with g a [1/2, 1]2 → [1/2, 1] function solely depending upon FX. It is
easy to verify that g is increasing and has 1/2 as neutral element. For instance,
if qi j = 1/2 then condition (4.5) implies that ti = t j, whence qik = g(1/2, q jk) =
q jk. Furthermore, g is symmetric and since qki = 1 − qik ≤ 1/2, we can rewrite,
using previously introduced notations, the functional relationship as 1−αi jk =
g(βi jk, γi jk) if βi jk ≥ 1/2, or equivalently

αi jk + βi jk + γi jk − 1 = βi jk + γi jk − g(βi jk, γi jk) , if βi jk ≥ 1/2 .

Since the above equality holds for all (i, j, k) for which βi jk ≥ 1/2, it follows
that the probabilistic relation Q is cycle-transitive w.r.t. the self-dual function
U s

g defined in (2.51). Hence, according to the terminology introduced in Sec-
tion 2.4.4, the probabilistic relation Q is g-isostochastic transitive.

Note that qi j = 1 implies that FX(x + ti − t j) = 1 for all x for which
dFX(x) 6= 0. Hence, qi j = 1 implies that x + ti − t j ≥ τu should be satis-
fied for all x ∈ [τl , τu], where τl and τu are the lower and upper bounds of the
support of dFX, or equivalently, ti − t j ≥ τu − τl = τ , where τ is the range of
this support. This can therefore only occur if the distribution of X has finite
support.

Finally, it must be emphasized that condition (4.5) is not only a sufficient
but also a necessary condition for the g-isostochastic transitivity. However, in
a continuous dice model, it is sufficient that the distribution of X has either
infinite support or has as finite support a single interval. In a discrete dice
model, it is sufficient that the probability mass function is strictly positive on a
single interval of integers and zero elsewhere.

Example – 4.3.2:
As a first example of a dice model with shifted distributions, let us consider
the case of the exponential distribution with parameter λ, i.e. FX(x) = 1 −
exp(−λx). Let us assume that the translational parameters for the three ran-
dom variables Xi, X j, Xk are such that ti ≥ t j ≥ tk.
We compute

qi j = Prob{Xi > X j} =
∫ +∞

ti
λe−λ(x−ti)[1 − e−λ(x−t j)] dx

= 1 − 1
2 e−λ(ti−t j) ,

from which it follows that exp(−λ(ti − t j)) = 2(1 − qi j). Similarly, it holds
that exp(−λ(t j − tk)) = 2(1 − q jk). This leads to

qik = 1 − 1
2 e−λ(ti−tk) = 1 − 1

2 e−λ(ti−t j)e−λ(t j−tk) = 1 − 2(1− qi j)(1 − q jk) .

Since ti ≥ t j ≥ tk, it holds that qi j ≥ 1/2, q jk ≥ 1/2 and qki ≤ 1/2, and the
foregoing expression can be rewritten as

1 −αi jk = 1 − 2(1 −βi jk)(1 − γi jk) .
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It then follows that Q is isostochastic transitive w.r.t. the function g defined by

g(x, y) = 1 − 2(1− x)(1− y) . (4.7)

Using Proposition 2.4.10, we obtain the associated t-conorm Sg as

Sg(x, y) = x + y − xy ,

which is the previously introduced probabilistic sum. J

Example – 4.3.3:
As a second example, we consider the Gumbel distribution G(µ, η) as the
generic distribution for a collection of shifted random variables. A continu-
ous random variable X on R is said to be Gumbel-distributed with parameters
µ and η, if it holds that:

fX(x) = µe−µ(x−η)e−e−µ(x−η) , (4.8)

for any x ∈ R. The corresponding c.d.f. is then given by

FX(x) = e−e−µ(x−η) .

The random variable X has expected value η + C/µ and variance π 2/(6µ2),
with C the Euler-Masceroni constant. It is known that if X1

d
= G(µ, η1) and

X2
d
= G(µ, η2) are independent Gumbel-distributed random variables having

the same variance (same µ), then the random variable max(X1, X2) is Gumbel-
distributed with the same µ and with parameter η = ln(eµη1 + eµη2)/µ, where-
as X1 − X2 is a random variable that has the logistic distribution, i.e.:

FX1−X2(x) =
1

1 + eµ(η2−η1−x)
. (4.9)

Let us assume that Xi, X j, Xk are three random variables with distributions
shifted by ti, t j, tk from the generic Gumbel distribution G(µ, η). Then

qi j = 1 − FXi−X j(0) =
eµ(η j−ηi)

1 + eµ(η j−ηi)
=

eµη j

eµηi + eµη j .

Using the short notation λi = exp(µ ηi), we obtain

qi j =
λi

λi + λ j
,

from which we immediately obtain that qi j/q ji = λi/λ j. Since obviously equal-
ity (1.13) is satisfied for all (i, j, k), the probabilistic relation Q is multiplica-
tively transitive, or, equivalently, isostochastic transitive w.r.t. the function g
defined in (2.54). J
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4.4 Dice models with parametric random variables
4.4.1 Considered families
We now investigate independent continuous random variables with probabil-
ity density functions taken from a one-parameter family of density functions.
These families and density functions are listed in Table 4.1 (the variable param-
eter in all cases being λ, while the other parameters are treated as constants).
In the case of normal distributions, for example, we only consider the one-
parameter subfamily of normal distributions with varying expected value and
constant variance.

Table 4.1: Parametric families of continuous distributions.

Name Density function f (x)

Exponential λe−λx λ > 0 x ∈ [0, +∞[

Beta λx(λ−1) λ > 0 x ∈ [0, 1]

Pareto λx−(λ+1) λ > 0 x ∈ [1, +∞[

Gumbel µe−µ(x−λ)e−e−µ(x−λ)
λ ∈ R, µ > 0 x ∈ ]− ∞, +∞[

Uniform 1/a λ ∈ R, a > 0 x ∈ [λ, λ + a]
Laplace e−|x−λ|/µ)/(2µ) λ ∈ R, µ > 0 x ∈ ]− ∞, +∞[

Normal e−(x−λ)2/(2σ2)/
√

2πσ2 λ ∈ R, σ > 0 x ∈ ]− ∞, +∞[

4.4.2 Examples of multiplicative transitivity
4.4.2.1 Exponentially distributed dice

Let us consider the case of exponentially distributed dice, i.e. Xi
d
= E(λi). It

then holds that

qi j =
∫ +∞

0
λie−λix

(

∫ x

0
λ je−λ j ydy

)

dx =
λi

λi + λ j
,

and it follows that qi j/q ji = λi/λ j, which shows that Q is again multiplicatively
transitive.

It is worthwhile to remark that the same transitivity property holds for the
probabilistic relation Q generated by independent discrete random variables
Xi

d
= G(pi) that are geometrically distributed (i.e. pXi(k) = pi(1 − pi)k−1 , 0 <

pi < 1 , k ≥ 1). Indeed, taking into consideration (4.3), we compute

qi j =
+∞

∑
k=1

(1 − p j)
k−1p j

+∞

∑
l=k+1

(1 − pi)
l−1pi +

1
2

+∞

∑
k=1

(1 − pi)
k−1(1 − p j)

k−1pi p j =
p j(1 − pi/2)

pi + p j − pip j
,
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and one can easily verify that the equality qi jq jkqki = (1− qi j)(1− q jk)(1− qki)
again holds. It is, after all, not so surprising that geometric distributions yield
the same type of transitivity as exponential distributions, since the former can
be regarded as a discretization of the latter.

4.4.2.2 Dice with a power-law distribution
The one-parameter power-law distributions mentioned in Table 4.1 form a sub-
family of the family of Beta distributions as well as of the family of Pareto-
distributions, the former ones having finite support, the latter ones having
infinite support. We leave it to the reader to verify that in the case of Beta
distributions we obtain qi j = λi/(λi + λ j), while for the Pareto distributions
we obtain qi j = λ j/(λi + λ j). In both cases we again obtain that the generated
probabilistic relations are multiplicatively transitivity.

4.4.2.3 Gumbel-distributed dice
In Example 4.3.3, we have already introduced the two-parameter family of
Gumbel distributions. By choosing Xi

d
= G(µ, λi), the distribution of Xi can

be regarded as the generic distribution G(µ, 0) shifted by λi. Hence, the re-
sult of Example 4.3.3 immediately applies, namely, the generated probabilistic
relation Q is again multiplicatively transitive.

4.4.3 Other examples of isostochastic transitivity
Note that the remaining one-parameter families of distributions from Table 4.1
all concern distributions that for varying λ can be regarded as shifted versions
of a single generic distribution. All these cases could therefore equally well
have been treated before as examples of dice with shifted distributions, and
moreover, we can already state, since the conditions of Proposition 4.3.1 are
always fulfilled, that these families of distributions all generate a probabilis-
tic relation that is g-isostochastic transitive, and hence also strongly stochastic
transitive. It remains to characterize that function g for each of these families.

4.4.3.1 Dice with a unimodal uniform distribution

Let us consider independent random variables Xi
d
= U[λi, λi + a] uniformly

distributed over the interval [λi, λi + a] and let us furthermore assume without
loss of generality that Xi, X j, Xk are three such random variables for which it
holds that λi ≥ λ j ≥ λk. If λi ≥ λ j + a then qi j = 1 and if λ j ≤ λi < λ j + a, then
by straightforward computation we obtain

qi j = 1 − (a + λ j − λi)2

2a2 .

Note that λi ≥ λ j implies that qi j ≥ 1/2. Introducing the short notation si j =
max(a + λ j − λi, 0), it follows that if λi ≥ λ j then qi j = 1 − s2

i j/(2a2). Similarly,
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since λ j ≥ λk, it holds that q jk = 1 − s2
jk/(2a2) and qik = 1 − s2

ik/(2a2). Solving
si j (resp. s jk) in terms of qi j (resp. q jk), we find si j = a(2(1 − qi j))

1/2 (resp.
s jk = a(2(1− q jk))

1/2). Since furthermore

sik = max((a + λk − λ j) + (a + λ j − λi)− a, 0) = max(si j + s jk − a, 0) ,

we obtain

qik = 1 −

(

max(a
√

2(1 − qi j) + a
√

2(1 − q jk)− a, 0)
)2

2a2 ,

which proves that the generated probabilistic relation Q is isostochastic transi-
tive w.r.t. the function g defined by

g(x, y) = 1 − 1
2

(

max(
√

2(1 − x) +
√

2(1 − y)− 1, 0)

)2
.

The associated t-conorm Sg, obtained using Proposition 2.4.10, is given by

Sg(x, y) = 1 −
(

max(
√

1 − x +
√

1 − y − 1, 0)
)2

,

which is known as the Schweizer-Sklar t-conorm SSS
1/2 with parameter value

1/2 [57].

4.4.3.2 Laplace-distributed dice (with constant variance)

Let Xi
d
= Lap(λi, µi) be Laplace-distributed random variables with parameters

λi, µi > 0, namely fXi(x) = exp(−|x − λi|/µi)/(2µi), then a straightforward
computation leads to

qi j =



















1 − 1
2(µ2

i −µ2
j )

[µ2
i e−(λi−λ j)/µi − µ2

j e−(λi−λ j)/µ j] , if λi ≥ λ j ,

1
2(µ2

i −µ2
j )

[µ2
i e−(λ j−λi)/µi −µ2

j e−(λ j−λi)/µ j] , if λi < λ j ,

which in the limit µi → µ, µ j → µ, reduces to

qi j =











1 − 1
2

[

1 +
λi−λ j

2µ

]

e−(λi−λ j)/µ , if λi ≥ λ j ,

1
2

[

1 +
λ j−λi

2µ

]

e−(λ j−λi)/µ , if λi < λ j .

Let f be the [0, +∞[→ ]0, 1/2] mapping defined by

f (x) =
1
2
(

1 +
x
2
)

e−x ,
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then, if λi ≥ λ j ≥ λk, we obtain

qi j = 1 − f
(

λi − λ j
µ

)

, q jk = 1 − f
(

λ j − λk
µ

)

, qik = 1 − f
(

λi − λk
µ

)

,

with qi j ≥ 1/2, q jk ≥ 1/2 and qik ≥ 1/2. Since f is a one-to-one mapping, the
generated probabilistic relation Q is isostochastic transitive w.r.t. the function g
defined by

g(x, y) = 1 − f
(

f−1(1 − x) + f−1(1 − y)
)

.

The associated strict t-conorm Sg is given by

Sg(x, y) = s−1(s(x) + s(y)) ,

with additive generator

s(x) = f−1
(

1 − x
2

)

.

4.4.3.3 Normally distributed dice (with same variance)
We use the notation Φ(x) for the c.d.f. of the standard normal distribution
N(0, 1) with expected value µ = 0 and variance σ2 = 1 (see Table 4.2). We
will use the following well-known properties:

Φ(−x) = 1 − Φ(x) , Φ−1(x) = −Φ−1(1 − x) . (4.10)

Let Xi
d
= N(µi,σ2

i ), X j
d
= N(µ j,σ2

j ) and Xk
d
= N(µk,σ2

k ), then, since X j − Xi
d
=

N(µ j −µi,σ2
i +σ2

j ), we obtain

qi j = Prob{Xi > X j} = Prob{X j − Xi < 0} = Φ





µi −µ j
√

σ2
i +σ2

j



 .

Now let all Xi have the same variance σ2, and let us without loss of generality
assume that µi ≥ µ j ≥ µk, then

qi j = Φ

(

µi − µ j√
2σ2

)

, q jk = Φ

(

µ j −µk√
2σ2

)

, qik = Φ

(

µi −µk√
2σ2

)

,

and qi j ≥ 1/2, q jk ≥ 1/2, qik ≥ 1/2. Hence,

qik = Φ
(

Φ−1(qi j) + Φ−1(q jk)
)

,

which proves that the probabilistic relation Q is g-isostochastic transitive with

g(x, y) = Φ
(

Φ−1(x) + Φ−1(y)
)

. (4.11)
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Note that due to (4.10) an alternative expression for the function g is

g(x, y) = 1 − Φ
(

Φ−1(1 − x) + Φ−1(1 − y)
)

.

The associated strict t-conorm Sg is given by

Sg(x, y) = s−1(s(x) + s(y))

with strict additive generator

s(x) = Φ−1
(

1 − x
2

)

.

An overview of the results obtained in the present section is presented in Ta-
ble 4.2 where for the random variables with parametric distributions defined in
Table 4.1, we list the function g w.r.t. which the probabilistic relation Q is isos-
tochastic transitive. In the cases of the unimodal uniform, Gumbel, Laplace

Table 4.2: g-isostochastic transitivity for the dice models described in Table 4.1.

Name Function g
Exponential
Beta x y

x y + (1 − x)(1− y)
Pareto associated to t-conorm SH

2
Gumbel (also valid for discrete geometric dice)

Uniform 1 − 1
2

(

max(
√

2(1 − x) +
√

2(1 − y)− 1, 0)
)2

associated to t-conorm SSS
1/2

Laplace 1 − f
(

f−1(1 − x) + f−1(1 − y)
)

with f (x) = 1
2
(

1 + x
2
)

e−x

Normal Φ
(

Φ−1(x) + Φ−1(y)
)

with Φ(x) = (
√

2π)−1 ∫ x
−∞

e−t2/2dt

and normal distributions we have fixed one of the two parameters in order
to restrict the family to a one-parameter subfamily, mainly because with two
free parameters, the formulae become utmost cumbersome. The one exception
is the two-dimensional family of normal distributions for which, as we will
see in the next section, a lot of simplifying steps in the computations allow to
maintain the two parameters as free parameters.
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4.5 Normally distributed dice
Let us again consider a collection of normally distributed random variables
Xi

d
= N(µi,σ2

i ). We know from the previous section that

qi j = Φ





µi −µ j
√

σ2
i +σ2

j



, q jk = Φ





µ j − µk
√

σ2
j +σ2

k



, qik = Φ





µi −µk
√

σ2
i +σ2

k



.

Introducing the notation φi j =
√

σi2 +σ j2, it follows from µi − µk = (µi −
µ j) + (µ j −µk), that

φikΦ
−1(qik) = φi jΦ

−1(qi j) + φ jkΦ
−1(q jk) , (4.12)

an equality which, since φik = φki, can be rewritten as

φi jΦ
−1(qi j) +φ jkΦ

−1(q jk) +φkiΦ
−1(qki) = 0 .

This formula turns out to be a key element in the proof of the following propo-
sition.

Proposition – 4.5.1: The probabilistic relation generated by a collection of
independent normal random variables is moderately stochastic transitive.

Proof:
Let us consider the case qi j ≥ 1/2 and q jk ≥ 1/2. It then follows that µi ≥ µ j ≥
µk, with as a consequence that also qik ≥ 1/2. This means that γi jk ≥ βi jk ≥ 1/2
and αi jk = qki. We have to prove that 1 − αi jk = qik ≥ min(βi jk, γi jk) =
min(qi j, q jk). Since Φ−1 is a strictly increasing function, this is equivalent to
proving that the inequality Φ−1(qik) ≥ min(Φ−1(qi j), Φ−1(q jk)) is fulfilled.
Using (4.12), we obtain that

Φ−1(qik) =
φi j
φik

Φ−1(qi j) +
φ jk
φik

Φ−1(q jk)

≥
φi j +φ jk

φik
min

(

Φ−1(qi j), Φ−1(q jk)
)

.

From the definition of φi j, it follows that φi j > 0 and furthermore it can easily
be shown that |φ2

jk −φ2
i j| ≤ φ2

ik ≤ φ2
i j + φ2

jk, which implies that the numbers
φ2

ik,φ2
i j, and φ2

jk are triangular numbers, since they satisfy the classical trian-
gular conditions. From the rightmost inequality of this double inequality, we
derive that

φi j +φ jk =
√

φ2
i j + φ2

jk + 2φi jφ jk ≥
√

φ2
i j +φ2

jk ≥ φik ,

which completes the proof.
Interestingly, the reverse statement of the above proposition also holds.
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Proposition – 4.5.2: Moderate stochastic transitivity is the characteristic
transitivity for 3-dimensional dice models with independent normal random
variables.

Proof:
Let us consider the case q jk ≥ qi j ≥ 1/2, the case qi j ≥ q jk ≥ 1/2 is completely
analogous. In the proof of Proposition 4.5.1 we obtained

Φ−1(qik) =

√

σ2
i +σ2

j
√

σ2
i +σ2

k

Φ−1(qi j) +

√

σ2
j +σ2

k
√

σ2
i +σ2

k

Φ−1(q jk) . (4.13)

When considering (4.13) as a function of σi over [0, +∞] with all other val-
ues being treated as real strictly positive constants and σk < σ j, we see that
it is strictly decreasing. Letting σi vary from +∞ to 0, Φ−1(qik) varies from
Φ−1(qi j) to

σ j
σk

Φ−1(qi j) +

√

σ2
j +σ2

k
σk

Φ−1(q jk) .

Treating the above quantity as a function of σ j over ]σk, +∞], we see that it is
strictly increasing and goes to infinity when σ j = +∞.

Concluding, we can let Φ−1(qik) vary from Φ−1(qi j) to +∞. In other words,
we can let qik vary from min(qi j, q jk) to 1. As Proposition 4.5.1 already proved
that all dice models with independent normal random variables are at least
moderately stochastic transitive, this concludes the proof.

4.6 The uniform distribution revisited
In this section we consider a collection of independent uniformly distributed
random variables Xi

d
= U[λi, λi + ai], satisfying different constraints than those

from Subsection 4.4.3.1. The obtained characteristic form of cycle-transitivity
will turn out not to be a type of isostochastic transitivity but instead it will
be g-stochastic transitivity with the function g given by g(x, y) = 1 − 2(1 −
x)(1 − y). Note that g-isostochastic transitivity with the same function g was
already encountered in Example 4.3.2. For ease of notation, we introduce the
values µi = λi + ai. We now impose on the collection of random variables the
constraint that, taking any 3 r.v. Xi, X j, Xk from the collection, the indices of
these r.v. can be renumbered such that λk ≤ λ j ≤ λi ≤ µk ≤ µ j ≤ µi. To set the
mind, Figure 4.1 shows the p.d.f. of 3 r.v. satisfying the imposed constraints.
We obtain

qi j = 1 − (µ j − λi)
2

2aia j
, q jk = 1 − (µk − λ j)

2

2a jak
, qki =

(µk − λi)2

2aiak
.

It is obvious that for the given equalities it holds that qi j ≥ 1/2, q jk ≥ 1/2 and
qki ≤ 1/2, implying that αi jk = qki. We now determine all possible values for
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λk λiλ j µ j µiµk

1/ai1/ak

fXl

Xl

1/a j

Figure 4.1: Dice model satisfying the constraints.

qki, under the constraints mentioned above, while keeping qi j and q jk fixed.
To that extent, we will fix λi, µi, λ j, µ j and will let µk vary between λi and µ j,
taking the appropriate value for λk such that q jk is invariant.

Consider a new set of r.v. Xi, X j, X(x)
k with X(x)

k
d
= U[λ

(x)
k , µ(x)

k ] and µ
(x)
k −

λ
(x)
k = a(x)

k , µ(x)
k = µk + x, x ∈ [λi −µk, µ j −µk], and corresponding values λ

(x)
k

and a(x)
k such that q(x)

jk = Q(X j, X(x)
k ) = q jk. Note that, since q jk ≥ 1/2 we are

assured that the obtained values for λ
(x)
k will always be less or equal to λ j. The

equality Q(X j, X(x)
k ) = q jk is equivalent to

(µ
(x)
k − λ j)2

2a ja(x)
k

=
(µk − λ j)2

2a jak
,

which in turn is equivalent to

a(x)
k =

ak(µk − λ j + x)2

(µk − λ j)2 .

We then obtain that

q(x)
ki =

(µ
(x)
k − λi)2

2aia(x)
k

=
(µk − λi + x)2

2aiak

(µk − λ j)
2

(µk − λ j + x)2 .

Considering q(x)
ki to be a continuous function of x, with x ∈ [λi − µk , µ j − µk],

we can take its derivative in order to obtain the minimum and maximum value
for q(x)

ki .

D(q(x)
ki ) =

(λi − λ j)(µk − λ j)2

aiak

µk − λi + x
(µk − λ j + x)3 .

Thus, q(x)
ki is increasing over [λi − µk , µ j − µk]. The minimal value for qki is

therefore obtained by setting x = λi − µk and is given by

q(λi−µk)
ki = 0 .

The maximal value for qki, under the mentioned constraints, is then obtained
by setting x = µ j −µk and is given by

q(µ j−µk)
ki =

(µk − λ j)2(µ j − λi)2

2aiaka2
j

. (4.14)
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The upper bound (4.14) for qki under the mentioned constraints holds for any
choice of λi, µi, λ j, µ j. The right-hand side of the above equation is therefore the
maximal value for αi jk = qki (in function of λi, µi, λ j, µ j) and it can be rewritten
as

qki ≤ 2(1 − qi j)(1− q jk) ,

with min(qi j, q jk) ≥ 1/2. The models investigated in this section are therefore
cycle-transitive w.r.t. the upper bound

Ug(α, β, γ) =

{

β + γ − g(β, γ) , β ≥ 1/2 ,
2 , β < 1/2 ,

with g(x, y) = 1 − 2(1 − x)(1 − y). Note that the above upper bound can be
recast in another nice equivalent form, namely

U′
g(α, β, γ) =

{

βγ + (1 −β)(1 − γ) , β ≥ 1/2 ,
2 , β < 1/2 .

T he true logic of this world is in the calculus of probabilities.

— JAMES C. MAXWELL
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In the previous chapter, a method was developed for comparing random
variables by pairwisely coupling them with a certain copula and defining a
probabilistic relation. In this chapter, we show that the same method can be
used to describe certain games. We focus here on independent random vari-
ables, i.e. r.v. coupled by the TP-copula, some games with differently coupled
r.v. will be discussed in Chapter 7. In the present chapter, a class of symmetric
games will be proposed and the necessary and sufficient conditions for such
a game to possess an optimal strategy will be laid bare along with the corre-
sponding optimal strategies. These results can be found in [26, 27, 30].

5.1 Introduction
Two mathematicians want to play a game and they happen to have at their
disposal two fair dice with n faces. As they love natural numbers (but for
some reason despise zero), they each take a dice and write on each face of the
dice such a non-negative number. They then throw their dice and the dice
with the highest number showing up on the bottom face wins the game, if the
two numbers happen to be equal they play a draw. The players are of course
not stupid — they are mathematicians after all — so in their first game they
end up writing huge numbers on the faces. They instantaneously realize some
limitation has to be imposed on the numbers to be written on the faces and
arrive at the natural limitation that the sum of the numbers on the faces of a
dice must equal some fixed number σ . After some discussion they coin the
name of their game as an (n,σ) game.

Since they each can choose their numbers independently from the other,
both players have in principle the same odds to win. However, not all com-
binations of numbers on the faces are good choices. There might be special
combinations that should be preferred to others: some strategies might be op-
timal while others are suboptimal. At first glance they cannot deduce which
strategies should be preferred, so each mathematician retreats to her study for
further investigation. If they do their job right, the results of their quest will
agree with the results that are obtained in the following sections. We now con-
tinue with a more formal description of the game.

5.2 Description of the game
The (n,σ) dice game is a game played between two players who want to ob-
tain the highest individual profit. Both players choose independently a dice
from the collection of (n,σ) dice. An (n,σ) dice is a fair, not necessarily ma-
terializable dice with n faces, each face containing a strictly positive number
of eyes and the sum of the eyes on all faces being equal to the given σ . One
can therefore also represent an (n,σ) dice by an (n,σ) partition, introduced in
Definition 1.4.2.

Once the players have chosen their own dice (note that they might have se-
lected the same kind), the (n,σ) dice game is played in one or more rounds. At
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the beginning of each round, both players place a bet of, say, e 1, then indepen-
dently roll their dice and compare the number of eyes on the bottom face: the
dice that falls on the face with the highest number of eyes wins the round. The
winner takes all and a new round can start. If the faces show the same number
of eyes, the round ends in a draw: there is no winner, both players get their
e 1 back before starting a new round. Since the two players have as objective
to win the game, and since each round of the game proceeds under the same
conditions (same strategy, same bet), they want to choose from the collection a
dice that maximizes their winning probability.

In order to compute the winning probability, let us regard dice Ai of player 1
and dice A j of player 2 as independent discrete random variables, uniformly
distributed on the multiset consisting of the number of eyes, for each face, of
dice Ai and A j, respectively. A uniform distribution on a finite multiset is, in
general, equivalent to a discrete distribution on an ordinary set endowed with
a rational probability mass function. The winning probability qi j of dice Ai
w.r.t. dice A j is the probability that, after the dice are thrown, the number on
the bottom face of Ai is strictly greater than the number on the bottom face of
A j plus one half of the probability that both numbers are equal, thus

qi j = Prob{Ai > A j} +
1
2 Prob{Ai = A j} . (5.1)

This probabilistic relation is therefore the same as the one introduced in Chap-
ter 3. Note that if both players have chosen the same dice, say Ai, then as
they roll it independently, they obviously have the same winning probability
qii = 1/2.

On the complete collection {Ai}k
i=1 of (n,σ) dice, k denoting the number

of partitions of σ into n parts, we consider the probabilistic relation Q = [qi j]
consisting of the winning probabilities between all couples of dice, or equiva-
lently, all couples of (n,σ) partitions. This set of dice therefore encompasses a
dice model that generates the probabilistic relation Q.

Although the games considered are played with dice of the same type (same
n and same σ), we will need to compare as well dice with same n but differ-
ent σ . We therefore generalize (5.1) by allowing the sum of the integers on dice
Ai and A j to differ.

In the next section, we characterize the dice game described above in the
formal setting of game theory. Section 5.4 then gives in the form of a theorem
and a number of propositions and corollaries a clear answer to the following
questions: for which values of n and σ do there exist optimal strategies, and if
such strategies exist, how many are they and what is their precise form? Sec-
tion 5.5 contains the proof of the results covered in Section 5.4. To make these
proofs as comprehensible as possible, examples of (n,σ) dice games and their
strategies will be used at different places to illustrate the theoretical results. A
table with the number of optimal strategies for some values of n and σ is given
in Table 7.3 on page 134.
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5.3 Game-theoretic characterization of the (n,σ) dice
game

For a short explanation of the used game-theoretical concepts, we refer to Sec-
tion 1.3. The (n,σ) dice Ai, with i = 1, 2, . . . , k, are the pure strategies. Let us
denote the set of all pure strategies as A. The problem of finding the best dice
therefore amounts to finding the optimal strategies of the game. In this respect,
we define the payoff function p(1) : A × A → [−1/2, 1/2] of player 1 by

p(1)(Ai, A j) = p(1)
i j = qi j −

1
2 , (5.2)

where the first argument Ai denotes the strategy of the first player and the
second argument A j the strategy of the second player. It follows that the payoff
function p(2) of player 2 is then given by

p(2)(Ai, A j) = p(2)
i j = (1 − qi j)−

1
2 = −p(1)

i j , (5.3)

where the meaning of the two arguments is the same as in (5.2). As short
notation and in accordance with Section 1.3, we use a1

i j = p(1)(Ai, A j) and
a2

i j = p(2)(Ai, A j). Note that the payoff 2ad
i j lies in the interval [−1, 1] and is

for d ∈ {1, 2} nothing else than the expected gain (expressed in e) of player d
in a single round (when both players bet e 1). As follows from (5.3), the game
is a symmetric matrix game. The example payoff matrix given in Figure 1.2 on
page 13 corresponds to the (6, 12) dice game.

The rest of this chapter is devoted to the characterization of all optimal
strategies of the (n,σ) dice games. It must be noted, however, that not all (n,σ)
dice games have optimal strategies and for these games we obviously cannot
state the strategies a player should pick to maximize her winning probabilities.
We will use the notation πi from partition theory instead of the notation Ai
which was used in previous chapters.

An (n,σ) partition πi is an optimal strategy in the (n,σ) dice game if it does
not lose from any other strategy. Therefore, πi is optimal if and only if a1

i j ≥ 0
or, equivalently, qi j = Q(πi, π j) ≥ 1/2, for all (n,σ) partitions π j. The process
of proving that an (n,σ) partition is optimal or not will thus involve checking
whether qi j = Q(πi, π j) ≥ 1/2 for all (n,σ) partitions π j or not. When it is
better suited to explicitly mention the (n,σ) partitions defining qi j, we will use
the notation Qπi ,π j instead of Q(πi, π j). The same technique and notations will
be used in Chapter 7 when determining the optimal strategies of the games
that are considered there.

5.4 Optimal strategies for (n,σ) dice games
In this section, we merely state the main results characterizing the optimal
strategies for (n,σ) dice games. In this and upcoming chapters, we make use
of the multiplicity representation of a partition, introduced in Definition 1.4.3.
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A first important observation is that not all (n,σ) dice games possess one or
more optimal strategies. The following theorem formulates the necessary and
sufficient conditions for an (n,σ) dice game to have at least one optimal strat-
egy.

Theorem – 5.4.1: An (n,σ) dice game has at least one optimal strategy if
and only if one of the following six mutually exclusive conditions is satisfied:

(i) n ≤ 2

(ii) (n,σ) = (3, 7)

(iii) (n,σ) = (3, 8)

(iv) (n,σ) = (2l, 4l + 1) , l > 1

(v) n > 2 and there exist a, b, k ∈ N such that
{

n = (a + b) k − b
σ = n k (5.4)

(vi) n > 2 and there exist a, b, k ∈ N such that






n = (a + b) k
σ = (n + b) k
a 6= 0 ∧ b 6= 0

(5.5)

While the above theorem characterizes all (n,σ) dice games that possess
optimal strategies, the propositions below state the number of optimal strate-
gies and their explicit form. We start by handling the special cases.

Proposition – 5.4.2:

1. The (1,σ) dice game: the unique strategy (σ1) is optimal.

2. The (2,σ) dice game: all bσ
2 c strategies (k1(σ − k)1), 0 < k ≤ bσ

2 c, are
optimal.

3. The (3, 7) dice game: (1132) is the only optimal strategy.

4. The (3, 8) dice game: (113141) is the only optimal strategy.

5. The (n, n) dice game: the unique strategy (1n) is optimal.

6. The (2n, 4n + 1) dice game, n > 1: (1n−1213n) is the only optimal strat-
egy.

The next proposition discusses the dice games of type (5.4), excluding the
(n, n) dice game as it has already been considered in the above proposition.
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Proposition – 5.4.3: All (n,σ) dice games, with n 6= σ , satisfying (5.4) have
exactly ba/(k − 1)c+ bb/kc + 1 optimal strategies and their multiplicity repre-
sentation is given by (1a2b3a4b . . . (2k − 2)b(2k − 1)a), where a, b are different
but k is the same for each optimal strategy.

Example – 5.4.4:
The (6, 12) dice game, for which the payoff matrix is given in Figure 1.2, has
the following pure strategies.

π1 = (1, 1, 1, 1, 1, 7)
π2 = (1, 1, 1, 1, 2, 6)
π3 = (1, 1, 1, 1, 3, 5)
π4 = (1, 1, 1, 1, 4, 4)

π5 = (1, 1, 1, 2, 2, 5)
π6 = (1, 1, 1, 2, 3, 4)
π7 = (1, 1, 1, 3, 3, 3)
π8 = (1, 1, 2, 2, 2, 4)

π9 = (1, 1, 2, 2, 3, 3)
π10 = (1, 2, 2, 2, 2, 3)
π11 = (2, 2, 2, 2, 2, 2)

With n = 6 and σ = 12, system (5.4) has the following solutions (k = 2): a = 3
and b = 0, a = 2 and b = 2, a = 1 and b = 4, a = 0 and b = 6. According to
Proposition 5.4.3, the multiplicity representations of the corresponding optimal
strategies are given by

a = 3 and b = 0 : (1333) , a = 1 and b = 4 : (112431) ,
a = 2 and b = 2 : (122232) , a = 0 and b = 6 : (26) .

These clearly correspond to the partitions π7, π9, π10 and π11. One can verify
that for any of the above a and b it indeed holds that b a

k−1c+ b b
k c+ 1 = 4. J

Finally, the games of type (5.5) are considered.
Proposition – 5.4.5: All (n,σ) dice games satisfying (5.5) have exactly one

optimal strategy (1a2b3a4b . . . (2k − 1)a(2k)b).

Example – 5.4.6:

(i) The (6, 21) game has 110 strategies and satisfies (5.5) with a = b =
1 and k = 3. The unique optimal strategy for this game is given by
(1, 2, 3, 4, 5, 6), the most common of all dice.

(ii) The (8, 22) dice game has 116 strategies and satisfies (5.5), with k = 2,
a = 1 and b = 3. The unique optimal strategy for this game is given by
(11233143). J

The above propositions imply the following corollaries, which are statements
about certain types of diophantine systems. The first corollary is implied by
Proposition 5.4.3.

Corollary – 5.4.7: For given values of n and σ , n 6= σ , the entity ba/(k −
1)c+ bb/kc is an invariant of the solution space of system (5.4). If this system
has a solution, then it has exactly ba/(k − 1)c+ bb/kc + 1 solutions.
On the other hand, Proposition 5.4.5 implies the following proposition.

Corollary – 5.4.8: For given values of n and σ , system (5.5) has at most
one solution.



“main” — 2005/9/15 — 7:22 — page 92 — #114
i

i

i

i

i

i

i

i

92 Chapter 5. Dice Games

5.5 Proof of the main results
We will use the concepts of decremented and incremented partitions, which
we first introduce here.

Definition – 5.5.1:

1. The decremented partition δ(π , m) corresponding to a given (n,σ) parti-
tion π = (i1, i2, . . . , in) is the (n,σ − 1) partition obtained by decrement-
ing the element im of π , 1 ≤ m ≤ n, where it is assumed that im 6= 1.

2. The incremented partition ν(π , m) corresponding to a given (n,σ) parti-
tion π = (i1, i2, . . . , in) is the (n,σ + 1) partition obtained by increment-
ing the element im of π , 1 ≤ m ≤ n.

The proof of the theorem and propositions from Section 5.4 is realized by
dividing the collection of (n,σ) partitions in different classes and by determin-
ing for each class separately the partitions that are optimal, if there are any.
With each class of partitions we will, when necessary, consider one or more
subcases.

Cases 1–5 cover the (n,σ) dice games specified in items (i)–(iii) from The-
orem 5.4.1 and items 1–5 from Proposition 5.4.2. After considering these cases,
we will introduce the increment/decrement operation, which will play a cen-
tral role when considering the subsequent cases. Case 6 considers a specific
type of strategies for which it is proven that they cannot be optimal. Case 7
considers another class of strategies, for which it is shown that there exists a
limited subset of optimal strategies. In this subset, the only strategies not yet
covered in previous cases, are those stated in item 6 of Proposition 5.4.2. The
proof of item (iv) in Theorem 5.4.1 is then immediate. Finally, Case 8 considers
all remaining strategies, not yet covered by the previous cases. These strategies
can be nicely characterized and we will divide them in three subclasses, each
leading to a subcase in the proof. Subcases 8.1 and 8.2 are concerned with sub-
sets of strategies that will be proven not to be optimal, while in subcase 8.3 we
consider the remaining strategies, which are shown to be the optimal strate-
gies mentioned in Propositions 5.4.3 and 5.4.5. First, we will prove that these
strategies are indeed optimal, then we will prove that they only exist when
either condition (5.4) or condition (5.5) is satisfied. Also, the number of these
optimal strategies will be counted in order to finalize the proof of Proposi-
tions 5.4.3 and 5.4.5. Corollaries 5.4.7 and 5.4.8 will immediately follow from
these results.

5.5.1 Proofs for some special (n,σ) dice games
As mentioned above, we first consider some special cases that cannot be han-
dled in a more general way. These all have optimal strategies.
Case 1: The (1,σ) dice game.
There is only one strategy in this type of game, namely (σ1), and this strategy
is therefore optimal.
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Case 2: The (2,σ) dice game.
For any two (2,σ) partitions π1 and π2, it holds that Qπ1 ,π2 = 1/2. Indeed, for
any two distinct (2,σ) partitions π1 = (a1, a2) and π2 = (b1, b2), we have that
either a1 < b1 ≤ b2 < a2 or b1 < a1 ≤ a2 < b2, from which it follows that
Qπ1,π2 = 1/2. Therefore, any (2,σ) partition is an optimal strategy. Moreover,
it is obvious that there exist exactly bσ/2c such (2,σ) partitions.
Case 3: The (3, 7) dice game.
In the (3, 7) dice game, it holds that (1, 3, 3) is the only optimal strategy. In-
deed, there are four (3, 7) partitions: (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3). Easy
calculations support the stated result.
Case 4: The (3, 8) dice game.
In the (3, 8) dice game, it holds that (1, 3, 4) is the only optimal strategy. In-
deed, there are five (3, 8) partitions: (1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3).
Again, easy calculations support the stated result.
Case 5: The (n, n) dice game.
There is only one strategy in this dice game, namely (1n), which is therefore
optimal.

5.5.2 Decremented and incremented partitions reconsidered
In what follows, we can exclude the above special cases. Before going further,
we need to introduce some concepts related to decremented partitions.

Definition – 5.5.2: Consider an (n,σ) partition π = (i1, i2, . . . , in). Let m
(1 ≤ m ≤ n) be such that im 6= 1 and

(∀ 1 ≤ j ≤ n) (i j 6= 1 ⇒ Qπ ,δ(π , j) ≤ Qπ ,δ(π ,m)) . (5.6)

Such values of m will be called max-decrement positions.

Property (5.6) specifies that the probability that the original partition π

wins from the decremented partition δ(π , i) is highest when i is a max-decre-
ment position. Note that such a value is not necessarily unique. For example,
the (10, 39) partition π = (1, 1, 1, 3, 3, 4, 6, 6, 6, 8) has 6, 7, 8 or 9 as possible
max-decrement positions, where δ(π , 6) = (1, 1, 1, 3, 3, 3, 6, 6, 6, 8), δ(π , 7) =
δ(π , 8) = δ(π1, 9) = (1, 1, 1, 3, 3, 4, 5, 6, 6, 8) and Qπ ,δ(π ,6) = Qπ ,δ(π ,7) = 1/2 +

3/200.
Since (n, n) dice games are excluded, at least one such max-decrement po-

sition exists. Clearly, for any ik 6= 1 it holds that

Qπ ,δ(π ,k) = Qπ ,π +
tik + tik−1

2n2 =
1
2 +

tik + tik−1
2n2 .

Also, incrementing ik in π gives rise to the following equality:

Qπ ,ν(π ,k) =
1
2 − tik + tik+1

2n2 .
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Next, suppose we increment ik and decrement il , il 6= 1 and l 6= k, in an (n,σ)
partition π1, then we obtain an (n,σ) partition π2. We call this operation an
increment/decrement operation. The following equality then holds.

Qπ1 ,π2 =
1
2 +

til + til−1 − tik − tik+1
2n2 .

In the next cases, when proving that a given partition π1 is not an optimal
strategy, we will construct a partition π2 such that Qπ1 ,π2 < 1/2 by means of
increment/decrement operations. Obviously, this construction of a partition
π2 that wins from partition π1 is in general not unique.

5.5.3 Towards a special case: the (2l, 4l + 1) dice games
We now divide the set of all remaining (n,σ) partitions into three classes and
investigate each class separately.
Case 6: Consider an (n,σ) partition π1 = (1t12t2 . . .) such that

(∃ j > 0) (t j = 0 ∧ t j+1 = 0 ∧ t j+2 6= 0) . (5.7)

Partitions satisfying (5.7) are not optimal. Indeed, take such a partition π1 and
decrement an occurrence of j + 2 by 2 and increment two different elements l (if
t j+2 > 1 then choose l to be another occurrence of j + 2) and m from partition
π1. The resulting partition π2 wins from π1. Indeed, it holds that

Qπ1 ,π2 = Qπ1 ,π1 −
tl + tl+1 + tm + tm+1 − t j+2

2n2 .

From the right-hand side it is seen that Qπ1,π2 is strictly smaller than 1/2, since
it clearly holds that tl > 0 and tm > 0 and that l = j + 2 when t j+2 > 1.

Example – 5.5.3:

(i) Consider the (4, 15) partition π1 = (1, 4, 4, 6) for which formula (5.7) is
satisfied for j = 2. For the (4, 15) partition π2 = (2, 2, 5, 6) it holds that
Qπ1 ,π2 = 15/32 < 1/2.

(ii) Consider the (3, 12) partition π1 = (3, 4, 5) for which formula (5.7) is now
satisfied for j = 1. For π2 = (1, 5, 6) it holds that Qπ1 ,π2 = 7/18 < 1/2.J

Case 7: Consider an (n,σ) partition π1 = (1t12t2 . . .) such that

(∃ m′, im′ 6= 1) (Qπ1,δ(π1,m′) < Qπ1 ,δ(π1,m)) , (5.8)

where m is a max-decrement position as defined in (5.6). We can safely assume
that (5.7) does not hold as that case was covered before.

First assume there exists an m satisfying (5.6) and for which tim−1 6= 0,
together with an m′ satisfying (5.8). Furthermore, assume that it holds that
im′ 6= im − 1 or tim′ > 1. We need at least one of these two conditions to hold
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because otherwise it is impossible to increment an occurrence of im − 1 and
decrement an occurrence of im′ . So, we are able to construct π2 starting from
π1 by incrementing an occurrence of im − 1 and decrementing im′ . Noting that
tim−1 + tim > tim′−1 + tim′ (due to (5.8)), we obtain that

Qπ1 ,π2 = Qπ1,π1 −
tim−1 + tim − tim′ − tim′−1

2n2 <
1
2 .

Secondly, let us assume there exists an m satisfying (5.6) and for which tim−1 =
0, together with an m′ satisfying (5.8). We build π2 starting from π1, by in-
crementing im and decrementing im′ . Noting that tim > tim′−1 + tim′ , we now
obtain

Qπ1 ,π2 = Qπ1 ,π1 −
tim − tim′ − tim′−1

2n2 <
1
2 .

Note that tim+1 must equal 0, as m is a max-decrement position and tim−1 = 0,
and therefore we can safely omit it in the above expression.

It is easy to see that the only partitions not covered by the previous assump-
tions while satisfying (5.8) and not satisfying (5.7), correspond to the following
two types of partitions:

π1 = (1t1314t4) , with t1 > 0 and t4 > 0 , (5.9)
π1 = (1t1213t3) , with 0 ≤ t1 < t3 . (5.10)

Indeed, it must hold that im′ and im are unique, that im′ = im − 1, tim′ = 1 and
that (5.7) is not satisfied. There must only be one possible choice for im′ and im
as there otherwise would exist a choice such that im′ 6= im − 1. The fact that
im and im′ are unique implies that #{i | i > 1 ∧ ti 6= 0} = 2. Furthermore, the
fact that im − 1 = im′ and that (5.7) is not satisfied, imply that either m = 4 and
t1 6= 0, or m = 3 and t1 < t3.

First, consider partitions of type (5.9). If t1 > 1, then we make π2 from π1
by incrementing an occurrence of 1 and decrementing 3, obtaining

Qπ1,π2 = Qπ1 ,π1 −
t1 − 1
2n2 <

1
2 .

Now, suppose t1 = 1. Unless there is only one occurrence of 4, which corre-
sponds to Case 4, we can construct π2 from π1 by decrementing 3 and incre-
menting an occurrence of 4. We then obtain

Qπ1,π2 = Qπ1 ,π1 −
t4 − 1
2n2 <

1
2 .

Secondly, let us consider partitions of type (5.10). When t1 < t3 − 1, the parti-
tion π2 = (1t1+13t3−141) wins from π1, since

Qπ1 ,π2 = Qπ1 ,π1 −
t3 − t1 − 1

2n2 <
1
2 .

Suppose now that t1 = t3 − 1. If t1 = 0, then π1 = (2, 3) belongs to the
class of partitions covered in Case 2. If t1 > 0, then the partition π1 is of
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type (1l−1213l), with l > 1, and these are all optimal strategies. Indeed, using
increment/decrement operations, we can transform the (2l, 4l + 1) partition
π1 = (1l−1213l) into any other (2l, 4l + 1) partition. First note that an incre-
ment of 2 is useless, as this would cancel out an earlier increment/decrement
operation. Therefore, for any partition π ′′

1 , obtained as an intermediate step
by an increment/decrement operation performed on partition π ′

1 in this incre-
ment/decrement process, it holds that Qπ1 ,π ′

1
≥ Qπ1,π ′′

1
and as Qπ1,π1 = 1/2

we obtain that π1 is indeed an optimal strategy. As it is easily verified that for
(n,σ) = (2l, 4l + 1) the diophantine systems (5.4) and (5.5) have no solution, it
follows from Theorem 5.4.1 (of which a part of the proof still needs to be given
below), that (1l−1213l) is the only optimal strategy of the (2l, 4l + 1)-game,
with l > 1.

Example – 5.5.4:

(i) Consider the (6, 23) partition π1 = (1, 2, 3, 5, 6, 6), m = 5 or m = 6,
tim−1 = 1, then the possible values for m′ are 2 and 3. Choosing π2
to be one of the partitions (1, 1, 3, 6, 6, 6) and (1, 2, 2, 6, 6, 6), we obtain
Qπ1 ,π2 = 35/72.

(ii) Consider the (4, 11) partition π1 = (1, 3, 3, 4), m = 4, im′ = im − 1, tim′ =

2 > 1. If we choose π2 = (1, 2, 4, 4), then Qπ1,π2 = 15/32.

(iii) Consider the (4, 12) partition π1 = (1, 3, 4, 4). For π2 = (1, 2, 4, 5), we
find Qπ1 ,π2 = 15/32.

(iv) Consider the (3, 8) partition π1 = (2, 3, 3). If we choose π2 = (1, 3, 4),
then Qπ1,π2 = 4/9.

J

5.5.4 Investigation of the remaining dice games

Case 8: If (5.7) and (5.8) are not satisfied, then the partition π1 should satisfy
the following property, for some fixed C ∈ N0:

{

i > 1 ∧ ti > 0 ⇒ ti−1 + ti = C ,
(∀ i < in)(ti + ti+1 > 0) . (5.11)

The first property holds because (5.8) is not satisfied, while the second prop-
erty holds because (5.7) is not satisfied.

The remaining cases for π1 are therefore of one of the following types (a, b ∈
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N, a + b > 0, k, k′ ∈ N0, k < k′):

(1a2b . . . (2k)b(2k + 1)a(2k + 3)a+b(2k + 5)a+b . . . (2k′ + 1)a+b) (5.12)

(1a2b . . . (2k − 1)a(2k)b(2k + 2)a+b(2k + 4)a+b . . . (2k′)a+b) (5.13)

(1a2b . . . (2k − 2)b(2k − 1)a) (5.14)

(1a2b . . . (2k − 1)a(2k)b) (5.15)

(1a3b5b . . . (2k + 1)b) (5.16)

To assure that these five cases are mutually exclusive, the following conditions
on a and b must be imposed. For type (5.12) and (5.13), a 6= 0 and b 6= 0 must
hold because else π1 would correspond to type (5.14) or (5.15), or (5.7) would
hold. For type (5.15) it must hold that a 6= 0 and b 6= 0 (making (5.14) and
(5.15) mutually exclusive). For type (5.16) it should hold that a 6= b, a 6= 0 and
b 6= 0 in order to make it mutually exclusive with (5.14) and to exclude the
partitions considered already in Cases 5 and 6.
Subcase 8.1: Suppose π1 is of type (5.12) or (5.13), with a 6= 0 and b 6= 0.

Let ν = min{i | ti = 0}. Clearly ν > 2 and tν+1 > 1. Decrement an occur-
rence of ν + 1 by 2, increment another occurrence of ν + 1 by 1 and increment
an occurrence of 1 by one. The resulting (n,σ) partition π2 clearly wins from
π1. Indeed, for case (5.12) we obtain

Qπ1,π2 = Qπ1 ,π1 −
b

2n2 < 1/2 ,

while for case (5.13) we obtain

Qπ1,π2 = Qπ1 ,π1 −
a

2n2 < 1/2 .

Example – 5.5.5:

(i) Consider the (12, 39) partition π1 = (12233255). For the partition π2 =
(1124335361), it holds that Qπ1,π2 = 141/288.

(ii) Consider the (12, 58) partition π1 = (112231426383). For the partition
π2 = (233143617183), we find Qπ1,π2 = 143/288. J

Subcase 8.2: Suppose π1 is of type (5.16), with a 6= b, a 6= 0 and b 6= 0.
Let us first consider a > b. We construct π2 from π1 by incrementing an

occurrence of 1 and decrementing an occurrence of 3 to obtain

Qπ1,π2 = Qπ1 ,π1 −
a − b
2n2 <

1
2 .

Next, suppose a < b. If b > 2, then we construct π2 from π1 by decrementing
an occurrence of 3 by two and incrementing two other occurrences of 3 by one.
We obtain

Qπ1,π2 = Qπ1 ,π1 −
b − a
2n2 <

1
2 .
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When 0 < a < b = 2 and n > 3, we construct π2 from π1 by decrementing
an occurrence of 3 by two, incrementing the other occurrence of 3 by one and
incrementing an occurrence of 5 by one and obtain

Qπ1,π2 = Qπ1 ,π1 −
b − a
2n2 <

1
2 .

The case a = 1, b = 2 and n = 3 corresponds to Case 3.
Example – 5.5.6:

(i) Consider the (7, 19) partition π1 = (133252). Choosing π2 = (12223152)
yields Qπ1 ,π2 = 24/49.

(ii) Consider the (4, 10) partition π1 = (1133). For π2 = (1242), it holds that
Qπ1 ,π2 = 7/16.

(iii) Consider the (5, 17) partition π1 = (113252). Choosing π2 = (12415161),
it follows that Qπ1 ,π2 = 12/25. J

Subcase 8.3: Suppose π1 is of type (5.14) or (5.15) (with a 6= 0 and b 6= 0 in case
of (5.15)), which implies that

(∀ i < in)(ti + ti+1 = C = a + b) . (5.17)

We will prove that such (n,σ) partitions do not lose from any other (n,σ)
partition. Consider an (n,σ) partition π2 = ( j1, . . . , jn) = (1t′12t′2 . . .). As
π1 is also an (n,σ) partition, we can obtain π2 from π1 step by step using
increment/decrement operations on the elements of the intermediate parti-
tions.

When jn ≤ in we can obtain π2 from π1 gradually by repeatedly increment-
ing some k ∈ πi with k < in in the intermediate partition πi and decrementing
another l in πi until partition π2 is obtained. It is obvious that after every in-
crement/decrement operation, obtaining an intermediate partition πi, it holds
that Qπ1 ,πi = Qπ1 ,π1 . Indeed, consider such an intermediate partition πi and let
k (resp. l) be the number to be incremented (resp. decremented). From (5.17) it
follows that tl−1 + tl = C = tk + tk+1 (recall that k < µ). Let π ′

i be the parti-
tion obtained from πi after the mentioned increment/decrement operation. We
then obtain

Qπ1,π ′
i
= Qπ1 ,πi +

tl + tl−1 − tk − tk+1
2n2 = Qπ1 ,πi .

Since the end result of the transformation is π2 and we started from π1, we
obtain Qπ1 ,π2 = Qπ1 ,πi = Qπ1,π1 = 1/2.

When jn > in we can use increment/decrement operations to obtain π2
from π1 while only decrementing numbers l ≤ in. There will be at least one
increment/decrement operation that decrements a number l ≤ in and incre-
ments k = in. Therefore, it holds for case (5.14) that Qπ1 ,π2 ≥ Qπ1 ,π1 + b/(2n2)
and for case (5.15) that Qπ1,π2 ≥ Qπ1 ,π1 + a/(2n2). This proves that the (n,σ)
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partition π1 does not lose from any (n,σ) partition and therefore π1 is an opti-
mal strategy.

Example – 5.5.7:

(i) Consider the (12, 36) partition π1 = (1223324352), which is of type (5.14),
and the (12, 36) partition π2 = (12213445). Using increment/decrement
operations, we can transform π1 into π2:

π1 = (1223324352) → π ′
1 = (1222334451) → π ′′

1 = π2 = (12213445) .

It holds that Qπ1 ,π1 = 1/2 = Qπ1 ,π ′
1
= Qπ1,π ′′

1
= Qπ1,π2 .

(ii) Consider the (10, 26) partition π1 = (12233243), which is of type (5.15),
and the (10, 26) partition π2 = (132453). We again transform π1 into π2:

π1 = (12233243) → π ′
1 = (1322324251) → π ′′

1 = (1323314152)

→ π ′′′
1 = π2 = (132453) .

Since Qπ1,π ′
1
= 51/100 > 1/2, we obtain Qπ1,π2 > 1/2. J

All possible (n,σ) partitions have been considered in the above cases and the
previously obtained results already show how the optimal strategies look. We
still need to prove, for (n,σ) games with n > 2, that the existence of parti-
tions of type (5.14), resp. (5.15), is equivalent to condition (5.4), resp. (5.5), from
Theorem 5.4.1 and obtain the number of optimal strategies for (n,σ) games of
one of these two types. As was already mentioned, the first three conditions
of Theorem 5.4.1 correspond to the special Cases 1–4 considered in this subsec-
tion. The fourth condition of Theorem 5.4.1 was obtained in Case 7.

5.5.5 Finalizing the proof of Theorem 5.4.1
We will now prove, for n > 2, that condition (5.4), resp. (5.5), is equivalent
to the condition that there exists at least one (n,σ) partition π1 that is of type
(5.14), resp. (5.15), where for the case of (5.15) it is required that a 6= 0 and
b 6= 0. It is obvious that case (5.14) implies n = (a + b)k− b and that case (5.15)
implies n = (a + b)k. For case (5.14) we obtain as sum

σ = a (1 + 3 + . . . + (2 k − 1)) + b (2 + 4 + . . . + 2 k − 2)

= a k2 + b (k − 1) k = (a + b) k2 − b k = n k ,

while for case (5.15) we obtain as sum

σ = a (1 + 3 + . . . + (2 k − 1)) + b (2 + 4 + . . . + 2 k)
= a k2 + b (k + 1) k = (a + b) k2 + b k = (n + b) k .

The above proves that if π1 is an optimal strategy, one of the five conditions
from Theorem 5.4.1 is satisfied. On the other hand, it is obvious that whenever
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one of those five conditions is satisfied, there exists an optimal strategy, which
concludes the proof of Theorem 5.4.1. The above reasoning also proves the
statements in Propositions 5.4.3 and 5.4.5 about the multiplicity representation
of the optimal strategies.

We still need to prove that conditions (5.4) and (5.5) are mutually exclusive.
Therefore, suppose there exist a, b, k satisfying (5.4) and a′, b′, k′ satisfying (5.5)
(adding accents where appropriate). We then have that (n + b′)k′ = σ = nk,
which implies b′k′ = n(k − k′). As n = (a′ + b′)k′, it follows that n = a′k′ +
n(k − k′) and either k = k′ which implies b′ = 0, or k = k′ + 1 which implies
a′ = 0. But both a′ = 0 and b′ = 0 were excluded in (5.5) and both conditions
are therefore mutually exclusive.

5.5.6 Finalizing the proof of Proposition 5.4.3
To completely prove Proposition 5.4.3, we must still determine the number of
optimal strategies in a game of type (5.4).

Assume a, b, k are solutions of (5.4), with k > 1 (k = 1 corresponds to
Case 5) and with k being invariant for all solutions as this follows immedi-
ately from (5.4). Suppose now that n = (a + b) k − b and n = (a′ + b′) k − b′.
It follows that (a′ − a) k = (b − b′) (k − 1). Since these are all integers, this is
equivalent to a′ = a + l (k− 1) and b′ = b− l k, for some integer l. Restricting a′
and b′ such that a′ ≥ 0 and b′ ≥ 0 we obtain that l can vary from −ba/(k − 1)c
to bb/kc and there are indeed exactly ba/(k − 1)c+ bb/kc + 1 solutions.

5.5.7 Finalizing the proof of Proposition 5.4.5
Finally, the proof of Proposition 5.4.5 is concluded by showing that there is
exactly one optimal strategy in a game of type (5.5). There exist a, b, k for which
n = (a + b) k , σ = (n + b) k , a 6= 0 and b 6= 0. Suppose π1 = (i1, . . . , in) and
π2 = (i′1, . . . , i′n) are two different optimal strategies. As was shown above,
both partitions must be of type (5.15), with a and b different from 0.

Suppose in < i′n. Using increment/decrement operations we can construct
π2 from π1, only decrementing numbers smaller than or equal to in, and in at
least one of these intermediate steps, transforming the intermediate partition
πi to π ′

i , the number in will be incremented and we therefore obtain Qπ1 ,π2 ≥
Qπ1,π ′

i
= Qπ1 ,πi+a/(2n2) > Qπ1,πi ≥ Qπ1 ,π1 = 1/2, implying Qπ1 ,π2 > 1/2 and

π2 is then not an optimal strategy. The case in > i′n is completely analogous.
Therefore, k is an invariant of the solution space of (5.15), which implies that
the values of a and b are also fixed. Thus, there exists only one optimal strategy
in games of type (5.15).

As mentioned before, it is obvious that Proposition 5.4.3 (resp. Proposi-
tion 5.4.5) implies Corollary 5.4.7 (resp. Corollary 5.4.8). This completes the
proof of the theorem, propositions and corollaries of Section 5.4.
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T he Law of Fives: All things happen in Fives, or are
divisible by or are multiples of Five, or are somehow

directly or indirectly appropriate to 5.
(T he Law of Fives is never wrong)

— COMMON SENSE

T he truth is five but men have only one name for it.

— PATAMUNZO LINGANANDA
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In Chapter 4 the generalized dice model was introduced and an emphasis
was laid upon comparing independent random variables. We now investi-
gate some dice models in which the random variables are coupled differently.
The first two sections are concerned with discrete dice models, while the third
section discusses specific continuous dice models. In the first section a refor-
mulation of the probabilistic relation Q = [qi j] (defined in (4.1)) in function of
the bivariate c.d.f. is introduced and a general transformation algorithm that
can be used to simplify the determination of the characteristic transitivity of
certain models is obtained. In the same section, two generalized discrete dice
models, denoted as the discrete diceM model (resp. discrete diceL model), in
which the random variables are pairwisely coupled by the TM-copula (resp.
TL-copula) are discussed and alternative representations for a specific generic
class of these dice models is obtained. Chapter 7 will introduce games that are
played in such 2-dimensional models. In Section 2, the characteristic transitiv-
ity of both models is obtained. Section 3 then discusses the continuous diceM
and diceL models are discussed and it is proven that the characteristic transi-
tivity remains unchanged w.r.t. the corresponding discrete dice models. Most
of the results from this chapter can be found in [22, 24, 29].

6.1 Alternative representation for the specific models

This section is concerned with discrete dice models and most of the results can
be found in [29]. It is well known that, for discrete random variables Xi and
X j, pXi,X j(k, l) can be obtained from FXi ,X j as

pXi,X j(k, l) = FXi ,X j(k, l) + FXi,X j(k− 1, l− 1)− FXi,X j(k, l − 1)− FXi,X j(k− 1, l) .
(6.1)

6.1.1 The diagonal formula

We begin this subsection with proving an alternative representation for the
probabilistic relation Q = [qi j] generated by a discrete dice model.

Proposition – 6.1.1: Let Xi and X j be 2 discrete random variables coupled
by the copula C. It then holds that qi j = Prob(Xi > X j) + 1

2 Prob(Xi = X j) can
be rewritten as

qi j =
1
2

(

1 + ∑
k

(

C(FXi(k), FX j(k − 1))− C(FXi(k − 1), FX j(k))
)

)

. (6.2)

This is called the diagonal formula.
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Proof:

qi j = ∑
k

∑
l<k

Prob(Xi = k ∧ X j = l) +
1
2 ∑

k
Prob(Xi = k ∧ X j = k)

= ∑
k

(

C(FXi(k), FX j(k − 1))− C(FXi(k − 1), FX j(k − 1))
)

+

1
2 ∑

k

(

C(FXi(k), FX j(k)) + C(FXi(k − 1), FX j(k − 1))−

C(FXi(k − 1), FX j(k))− C(FXi(k), FX j(k − 1))
)

=
1
2

(

1 + ∑
k

(

C(FXi(k), FX j(k − 1))− C(FXi(k − 1), FX j(k))
)

)

.

The diagonal formula can be used to prove the following lemma.

Lemma – 6.1.2: Let Xi, X j, X′
i and X′

j be discrete random variables, and let
pX j(l) = 0, for some l ∈ Z. Let pX′

i
(k) = pXi(k) and pX′

j
(k) = pX j(k) for

k < l, let pX′
i
(k + 1) = pXi(k) and pX′

j
(k + 1) = pX j(k) for k > l and let

pX′
i
(l) + pX′

i
(l + 1) = pXi(l) and pX′

j
(l) = pX′

j
(l + 1) = 0. It then holds for any

copula C that Q(Xi, X j) = Q(X′
i , X′

j).

Proof:

l
l − 1

l − 1 l

(2)

(1)(4)(4)

(3)(3)(6)

(5)(5)

(2)

FXi,X j

l
l − 1

l − 1 l

(2)

(1)(4)(4)

(3)(3) (6)

(5) (5)

(2)

FX′

i ,X′

j

(5)

(3)l + 1

l + 1

(4)

(7) (7)(7)

(2)

Figure 6.1: Transformation illustration.

In Figure 6.1 we have that, e.g.,

(1) = C(FX′
i
(l − 1), FX′

j
(l − 2)) ,

(2) = C(FX′
i
(l − 2), FX′

j
(l − 1))

= C(FX′
i
(l − 2), FX′

j
(l))

= C(FX′
i
(l − 2), FX′

j
(l + 1)) .
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We need to prove that Q(X′
i , X′

j)−Q(Xi, X j) = 0, which due to the diagonal
formula is equivalent to

(

C(FX′
i
(l + 1), FX′

j
(l))− C(FX′

i
(l), FX′

j
(l + 1))+

C(FX′
i
(l), FX′

j
(l − 1))− C(FX′

i
(l − 1), FX′

j
(l))

)

−
(

C(FXi(l), FX j(l − 1))− C(FXi(l − 1), FX j(l))
)

= 0 ,

which is equivalent to ((3) − (7) + (7) − (4)) − ((3) − (4)) = 0, using the
notations from Figure 6.1, and this is trivially satisfied.
The above lemma then implies the following proposition.

Proposition – 6.1.3: The probabilistic relation generated by a generalized
discrete dice model in which each random variable Xi is uniformly distributed
over a multiset Ai such that all multisets are mutually disjoint can also be gen-
erated by a generalized discrete dice model in which the same copulas are used
to couple the random variables and in which each random variable X ′

i is uni-
formly distributed over a set A′

i, all sets of equal cardinality and again mutually
disjoint.

Proof:
We give the proof for such a dice model consisting of 2 random variables, the
generalization to more than 2 random variables is straightforward. Let X1 and
X2 be the random variables of the model. Transform X1 and X2 into X′

1 and
X′

2 step by step, by replacing each element of A1 (resp. A2) by #A1 (resp. #A2)
consecutive integers in an order preserving way (starting with the integer 1)
and such that the obtained sets remain disjunct. Due to Proposition 6.1.2 and
the fact that the multisets are mutually disjoint, we have that Q(X1, X2) =
Q(X′

1, X′
2).

Note that the above proposition can be seen as a generalization of Theo-
rem 3.3.3, however only for disjoint multisets. A general algorithm to trans-
form two nondisjoint multisets into two disjoint multisets while preserving
the corresponding probabilistic relation (and using the same copula) cannot be
given. We now illustrate the above proposition with an example.

Example – 6.1.4:
Consider the random variables X1 and X2 uniformly distributed over the mul-
tiset A1 = {1, 2, 4, 4, 4, 6}, resp. A2 = {3, 7, 8}. Using the short notation
F(k, l) = FX1 ,X2(k, l) = C(FX1(k), FX2(l)), it then holds that

F(k, k − 1) = F(k − 1, k) = 0 , ∀ k < 3 , F(k, k − 1) = F(k − 1, k) = 1 , ∀ k > 8 ,
F(3, 2) = 0 , F(2, 3) = C(1/3, 1/3) , F(4, 3) = C(5/6, 1/3) ,
F(3, 4) = C(1/3, 1/3) , F(5, 4) = C(5/6, 1/3) , F(4, 5) = C(5/6, 1/3) ,
F(6, 5) = C(1, 1/3) , F(5, 6) = C(5/6, 1/3) , F(7, 6) = C(1, 1/3) ,
F(6, 7) = C(1, 2/3) , F(8, 7) = C(1, 2/3) , F(7, 8) = C(1, 1) .
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Using the diagonal formula (6.2), we then obtain that

Q(X1, X2) = 1/3 − C(1/3, 1/3) .

Let now X′
1 and X′

2 be random variables uniformly distributed over the multi-
sets A′

1, resp. A′
2, defined by

A′
1 = N[1, 6]∪N[13, 24] ,

A′
2 = N[7, 12]∪N[25, 36] . (6.3)

Note that A′
1 and A′

2 are obtained from A1 and A2 using the algorithm from
Proposition 6.1.3. More precisely, 1 is replaced by {1, 2, 3}, 2 by {4, 5, 6}, 3 by
{7, 8, 9, 10, 11, 12}, the three occurrences of 4 by N[13, 24], and so on. Using the
short notation F′(k, l) = FX′

1,X′
2
(k, l) = C(FX′

1
(k), FX′

2
(l)), we now obtain

F′(k + 1, k) = F′(k − 1, k) = 0 , ∀ k < 7 ,
F′(k + 1, k) = F′(k − 1, k) = C(1/3, (k− 6)/18) , ∀ k ∈ N[7, 11] ,
F′(k, k − 1) = F′(k, k + 1) = C((k − 6)/18, 1/3) , ∀ k ∈ N[13, 23] ,
F′(k + 1, k) = F′(k − 1, k) = (k − 18)/18 , ∀ k ∈ N[25, 36] ,
F′(k + 1, k) = F′(k − 1, k) = 1 , ∀ k > 36 ,
F′(11, 12) = F′(12, 13) = C(1/3, 1/3) ,
F′(24, 23) = F′(25, 24) = 1/3 .

It therefore holds that

2Q(X′
i , X′

j)− 1 = −1/3 − 2C(1/3, 1/3) . (6.4)

From the above calculations it indeed follows that Q(X1, X2) = Q(X′
1, X′

2).
Note that the right-hand side in (6.4) is the sum

∑
k

(

C(FX1(k), FX2(k − 1))− C(FX1(k − 1), FX2(k))
)

,

and not, e.g., the sum

∑
k

(

C(FX1(k), FX2(k − 1))− C(FX1(k), FX2(k + 1))
)

,

which is in accordance with the diagonal formula. Both sums can differ, as is
the case in this example. J

The above example clearly illustrates that the diagonal formula is very useful
to obtain the probabilistic relation Q in function of an unknown copula C (for
discrete r.v.). The next proposition introduces an alternative representation of
discrete r.v. with finite support and rational probabilities. This representation
will prove useful in the next subsections.

Proposition – 6.1.5: Any collection of discrete random variables for which
the probability masses only take rational values and which all have finite sup-
port, can be regarded as a specific collection of random variables, each uni-
formly distributed over the elements of a multiset of integers (one multiset per
random variable), with all multisets having equal cardinality.
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Proof:
Let (X1, X2, . . . , Xm) be a collecton of discrete random variables, for which
pX j(i) = a ji/b ji, with a ji and b ji coprime, for any i ∈ Z and j ∈ N[1, m], and let
b be the least common multiple of the denominators b ji. Consider the multisets
A j consisting of a jib occurrences of i, for all i ∈ Z and j ∈ N[1, m], and the dis-
crete random variables X′

j uniformly distributed over the elements of A j, for
all j ∈ N. It then holds that pX j(i) = pX′

j
(i), for all i ∈ Z and j ∈ N[1, m].

We now give a short illustration of the above proposition.

Example – 6.1.6:
Consider the discrete random variables X1 and X2, for which pX1(5) = 2/3,
pX1(6) = 1/3, pX2(3) = 1/5 and pX2(4) = pX2(6) = 2/5. We now con-
struct the multisets A1 and A2 using the algorithm from the proof of the above
proposition, thus obtaining A1 = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6} and A2 =
{3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6}. Note that both multisets have the same
cardinality 15. X′

1 and X′
2 are then defined as discrete random variables uni-

formly distributed on A1 resp. A2. It then holds that pX1(i) = pX′
1
(i) and

pX2(i) = pX′
2
(i), for any i ∈ Z. J

In the following two subsections, we will consider discrete random variables
with rational probability masses and finite support and we will use the multiset
representation as introduced in Proposition 6.1.5.

6.1.2 The discrete diceM model
A diceM model is a dice model in which all r.v. are artificially coupled by the
TM-copula. We discuss in this subsection in particular the class of discrete
diceM models in which the r.v. have finite support and rational probability
masses. As has been said before, the probabilistic relation Q = [qi j] is, for
discrete r.v., defined by

qi j = ∑
k>l

pXi,X j(k, l) +
1
2 ∑

k=l
pXi,X j(k, l) . (6.5)

We first obtain a general result for the probabilistic relation generated by any
discrete diceM model. Using (6.1), we obtain

pM
Xi,X j

(k, l) = min(FXi(k), FX j(l)) + min(FXi(k − 1), FX j(l − 1))−
min(FXi(k), FX j(l − 1))− min(FXi(k − 1), FX j(l)) ,

which is equivalent to

pM
Xi,X j

(k, l) =







0 , if FXi(k) ≤ FX j(l − 1)∨ FX j(l) ≤ FXi(k − 1) ,
min(FXi(k), FX j(l))− max(FXi(k − 1), FX j(l − 1))

, otherwise .
(6.6)
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When representing the r.v. Xi as uniformly distributed r.v. over multisets of
equal cardinality (see Proposition 6.1.5), thereby restricting ourselves to dis-
crete r.v. with finite support and rational probability masses, we obtain the
following useful representation of the generated probabilistic relation.

Proposition – 6.1.7: The probabilistic relation generated by a diceM model
consisting of a collection (A1, A2, . . . , Am) of m multisets, each multiset having
cardinality n, is given by Q = [qM

i j ], where

qM
i j =

#{k | ik > jk}
n +

#{k | ik = jk}
2n , (6.7)

with Ai = {i1, i2, . . . , in} and A j = { j1, j2, . . . , jn}.
Proof:

As each element in the set has probability 1/n, the first part of (6.6) is equiva-
lent to saying that when #{` | i` = k ∧ j` = l} = 0, it holds that pM

Xi,X j
(k, l) = 0.

The second part is equivalent to saying that when #{` | i` = k ∧ j` = l} = f >
0, it holds that pM

Xi,X j
(k, l) = f /n. For these random variables, we can therefore

reformulate (6.5) as (6.7).

6.1.3 The discrete diceL model
A diceL model is a dice model in which all r.v. are artificially coupled by the
TL-copula. Similar to the previous subsection, in this subsection we discuss
the class of discrete diceL models in which the r.v. have finite support and ra-
tional probability masses. We again start with a result that holds for any dis-
crete diceL model, after which r.v. with finite support and rational probability
masses are considered.

Using (6.1), we obtain

pL
Xi,X j

(k, l) =

max(FXi(k) + FX j(l)− 1, 0) + max(FXi(k − 1) + FX j(l − 1)− 1, 0)

−max(FXi(k) + FX j(l − 1)− 1, 0)− max(FXi(k − 1) + FX j(l)− 1, 0) ,

which is equivalent to

pL
Xi,X j

(k, l) =







0 , if FXi(k) ≤ 1 − FX j(l) ∨ 1 − FX j(l − 1) ≤ FXi(k − 1) ,
min(FXi(k), 1− FX j(l − 1))− max(FXi(k − 1), 1− FX j(l))

, otherwise .
(6.8)

Proposition – 6.1.8: The probabilistic relation generated by a diceL model
consisting of a collection (A1, A2, . . . , Am)of m multisets, each multiset having
cardinality n is given by Q = [qL

i j]

qL
i j =

#{k | ik > jn−k+1}
n +

#{k | ik = jn−k+1}
2n , (6.9)

with Ai = {i1, i2, . . . , in} and A j = { j1, j2, . . . , jn}.
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Proof:
The first part of (6.8) is equivalent to demanding that when #{` | i` = k ∧
jn+`−1 = l} = 0, it holds that pL

Xi,X j
(k, l) = 0. The second part is then equiv-

alent to saying that when #{` | i` = k ∧ jn+`−1 = l} = f > 0, it holds that
pL

Xi,X j
(k, l) = f /n. For the considered random variables Xi and X j, (6.5) can

therefore be reformulated into (6.9).

Example – 6.1.9:

(i) Consider e.g. the nondisjoint sets A1 = {1, 2, 5, 8} and A2 = {2, 3, 5, 6}.
Figure 6.2 shows graphically which elements of the multisets have to be
compared, when the corresponding random variables are coupled by the
TM-, TP- and TL-copulas. We obtain qP

12 = (0 + 0.5 + 2.5 + 4)/16 = 7/16,
qM

12 = 0 + 0 + 1/8 + 1/4 = 3/8 and qL
12 = 0 + 0 + 1/4 + 1/4 = 1/2.

6
5
3

8
5
2

6
5
3
2

8
5
2
1

6
5
3
2

8
5
2

A2

1

TM TLTP
A2 A2 A1A1A1

1 2

Figure 6.2: The three comparison methods for a specific example.

(ii) Reconsider the sets (6.3) from Example 6.1.4. Using (6.7) (resp. (6.9)), we
obtain qM

i j = 0 (resp. qL
i j = 1/3). On the other hand, substituting C = TM

(resp. C = TL) in (6.4) obtains the same result.
J

6.2 Transitivity of the specific models
6.2.1 Transitivity of discrete diceM models

Proposition – 6.2.1: All m-dimensional discrete diceM models generate TL-
transitivite relations.

Proof:
As follows from Subsection 6.1.2 we only need to consider r.v. uniformly dis-
tributed over multisets of equal cardinality (discrete r.v. with infinite support or
nonrational probability masses can be approximated as close as possible by r.v.
with finite support and rational probability masses). Consider any 3 such mul-
tisets Ai = {i1, i2, . . . , in}, A j = { j1, j2, . . . , jn} and Ak = {k1, k2, . . . , kn}. To
obtain the probabilistic relation generated by the corresponding diceM model,
it follows from (6.7) that we only need to compare elements of the same order
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in the (ordered) multisets, namely all triples (il , jl , kl), with l ∈ N[1, n]. It is ob-
vious that the specific comparison done for each such triple contributes at least
1/n and at most 2/n to the sum qi j + q jk + qki. Summing over the n triples, we
obtain 1 ≤ qi j + q jk + qki ≤ 2.
For m = 3, the reverse statement is also true.

Proposition – 6.2.2: Any 3-dimensional TL-transitive probabilistic relation
Q = [qi j] with rational elements can be generated by a discrete diceM model in
which the multisets are ordinary mutually disjoint sets.

Proof:
Let q12 = p/n, q23 = q/n, q31 = r/n and let (A1, A2, A3) be a standard triplet,
with #A1 = #A2 = #A3 = n. Furthermore, let A1 = {a1, a2, . . . , an}, A2 =
{a′1, a′2, . . . , a′n} and A3 = {a′′1 , a′′2 , . . . , a′′n}, such that {ai, a′i, a′′i } = {3i − 2, 3i −
1, 3i} for i ∈ N[1, n]. In order to obtain Q(A1, A2) = q12 and Q(A2, A3) = q23,
we choose ai > a′i for i ∈ N[1, p], ai < a′i for i ∈ N[p + 1, n], a′i < a′′i for
i ∈ N[1, n − q], a′i > a′′i for i ∈ N[n − q + 1, n]. It already holds that a′′i > ai
for i ∈ N[p + 1, n − q] and a′′i < ai for i ∈ N[n − q + 1, p]. However, for
i 6∈ N[p + 1, n − q] ∪N[n − q + 1, p], it can be chosen freely whether a′′i > ai or
a′′i < ai. As Q is TL-transitive it holds that n − p − q ≤ r ≤ 2n − p − q, and we
can therefore choose enough of these remaining i such that a′′i > ai holds and
such that Q(A3, A1) = r/n, concluding the proof.

It is quite natural to extend the above proposition to any discrete diceM
model.

Corollary – 6.2.3: TL-transitivity is the characteristic transitivity of 3-di-
mensional discrete diceM models.

The question arises whether the reverse property which holds for 3-dimen-
sional TL-transitive probabilistic relations, extends to higher-dimensional rela-
tions. The question must be answered negatively, as has been pointed out by
Switalski [76] in his analysis of the type of transitivity of the so-called multidi-
mensional model.

Definition – 6.2.4: The multidimensional model is a preference model in
which the preferences generate a probabilistic relation Q = [qi j] defined by

qi j =
n
∑
t=1

µt q(t)
i j , (6.10)

with q(t)
i j ∈ {0, 1/2, 1}, q(t)

i j = 1 − q(t)
ji for all t ∈ N[1, n] and where the weights

µt (associated to criterion t) are such that µt ≥ 0 for all t ∈ N[1, n] and ∑n
t=1 µt =

1.

One easily sees that a multidimensional model with all µi = 1/n is equiva-
lent to a diceM model. Hence, if for a TL-transitive probabilistic relation Q with
rational elements a multidimensional model can be constructed that generates
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Q, then this model obviously has rational weights µt, so that also a collection
of ordered lists can be constructed that generates that same probabilistic re-
lation Q by applying the comonotonic comparison strategy. Moreover, if no
multidimensional model can be found to generate Q, then also no collection
of ordered lists that generates Q exists. This problem has been shown to be
closely connected to the coordinate values of the vertices of generalized transi-
tive tournament polytopes [10]. For a review of recent results in this field, the
reader is referred to [76]. From Theorem 5.3 of [75], we obtain the following
result.

Proposition – 6.2.5: Let Q = [qi j] be an m-dimensional probabilistic re-
lation with rational elements and m ≤ 5. Then Q is generated by a collec-
tion of ordered lists that are comonotonically compared if and only if Q is TL-
transitive.

Furthermore, it follows from [10] that for every n > 5 there exists a TL-
transitive probabilistic relation Q that has no representation as in (6.10), and
can therefore not be generated by ordered lists that are comonotonically com-
pared.

6.2.2 Transitivity of discrete diceL models
Partial g-stochastic transitivity was introduced in Definition 2.4.5. In this sub-
section, this type of transitivity shows up for g = min, and we will denote this
specific type of transitivity as partial min-stochastic transitivity.

Proposition – 6.2.6: All m-dimensional diceL models generate partial min-
stochastic transitivity.

Proof:
As was the case in the previous subsection, the results from Subsection 6.1.2
imply that we only need to consider multisets of equal cardinality. Consider 3
such multisets Ai = {i1, i2, . . . , in}, A j = { j1, j2, . . . , jn}, Ak = {k1, k2, . . . , kn},
and suppose that qi j > 1/2, q jk > 1/2. If qik = 1 then qik ≥ min(qi j, q jk) holds.
Suppose now that qik < 1 and let p = min{l | il ≥ jn+1−l}, q = min{l | jl ≥
kn+1−l} and r = min{l | kl ≥ in+1−l}. First suppose r > min(n − p + 1, n −
q + 1), it then holds that qki ≤ (n−min(n− p + 1, n− q + 1))/n, which implies
qik ≥ min(qi j, q jk).

Next, suppose r ≤ min(n − p + 1, n − q + 1). As max(p, q) ≤ n/2, it then
holds that ip ≥ jn−p+1 ≥ jq ≥ kn−q+1 ≥ kr ≥ in−r+1 ≥ ip, which implies
ip = jn−p+1 = jq = kn−q+1 = kr = in−r+1 = ip. We therefore have that jl = jq,
for all q ≤ l ≤ n − p + 1. First, suppose that p ≥ q. For l ∈ N[p, n − p] it holds
that il ≥ jn−l+1 = jl = jq = kn−q+1 ≥ kn−l+1, and for l > n − p it holds that
(as qi j > 1/2) il > jp ≥ jq = kn−q+1 ≥ kn−l+1. It follows that qik ≥ qi j. Finally,
suppose p < q. For l ∈ N[q, n − q], it holds that il ≥ jn−l+1 = jl ≥ kn−l+1,
while for l > n − q, it holds that (as q jk > 1/2) il ≥ iq ≥ jn−q+1 > kq ≥ kn−l+1.
It now follows that qik ≥ q jk.
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Partial stochastic transitivity must therefore be satisfied.

Proposition – 6.2.7: Any 3-dimensional partially min-stochastic transitive
probabilistic relation with rational elements can be generated by a discrete
diceL model in which the multisets are ordinary mutually disjoint sets.

Proof:
Let Q = [qi j] be such a probabilistic relation. Note that partial min-stochastic
transitivity is unconditional only when at least 2 elements from {qi j, q jk, qki}
equal 1/2. We first consider this case. Without loss of generality, suppose
qi j = q jk = 1/2 and qki = a/(2n), with a ∈ N[0, n]. The diceL model consisting
of the following three sets then generates this probabilistic relation.

Ai = N[n + 1, n + a] ∪N[3n + 1, 5n − a] ,
A j = N[n + a + 1, 2n + a] ∪N[5n − a + 1, 6n − a] ,
Ak = N[1, n]∪N[2n + a + 1, 3n]∪N[6n − a + 1, 6n] .

Suppose now that no such 2 elements equal 1/2, without loss of generality we
can assume βi jk > 1/2 because if that doesn’t hold then βk ji > 1/2. As the
probabilistic relation has rational elements, we can write them with common
denominator n. Suppose first that that the elements can be reordered such that
qi j = c/n, q jk = b/n and qki = a/n, with c ≥ b > n/2 and n − a ≥ b. The diceL
model consisting of the following three sets then generates this probabilistic
relation.

Ai = N[n + 1 + c − a, 2n + c − a] ,
A j = N[1, n − b] ∪N[n + 1, b + c] ∪N[2n + c − a + 1, 3n − a] ,
Ak = N[n − b + 1, n]∪N[b + c + 1, n + c − a] ∪N[3n − a + 1, 3n] .

Secondly, suppose the elements can be reordered such that qi j = b/n, q jk = c/n
and qki = a/n, with c ≥ b > n/2 and n − a ≥ b. This probabilistic relation is
then generated by the diceL model consisting of the sets

Ai = N[2n − c − a + 1, 3n − c − b − a] ∪N[2n + 1, 2n + b] ,
A j = N[1, n − c] ∪N[3n − c − b + 1, 2n]∪N[2n + b + 1, 3n] ,
Ak = N[n − c + 1, 2n− c − a] ∪N[3n − c − b − a + 1, 3n − c − b] .

As all cases were considered, the proof is concluded.
It is quite natural to extend the above proposition to any discrete diceL

model and we thus obtain the following result.

Corollary – 6.2.8: partial min-stochastic transitivity is the characteristic
transitivity of 3-dimensional discrete diceL models.

Again, the question arises whether this inverse statement can be general-
ized to higher-dimensional probabilistic relations. And again, the question
must be answered in negative sense.
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Proposition – 6.2.9: Not all 4-dimensional partially stochastic transitive
probabilistic relations (with rational elements) can be generated by a 4-dimen-
sional diceL model.

Proof:
The proof is completely similar to the proof of Theorem 6.2.9. Indeed, vital to
the proof is that determining the probabilistic relation involves comparing the
smallest element of one set to the highest element of the second set. Since the
conditions for partial min-stochastic transitivity to be satisfied for the graph of
Theorem 6.2.9 are also given by (3.27) and since the diceL model also involves
the comparison of the minimum of one list and the maximum of the other list
(as follows from (6.9)), we can conclude the proof.

6.3 Continuous diceM and diceL models
For completeness, we end this chapter with considering the investigated dice
models for continuous random variables. We therefore investigate the contin-
uous diceM model, for which the joint c.d.f. is given by

FM
Xi ,X j

(x, y) = min(FXi(x), FX j(y)) , (6.11)

and the continuous diceL model, where the joint c.d.f. is given by

FL
Xi ,X j

(x, y) = max(0, FXi(x) + FX j(y)− 1) . (6.12)

A nice representation for the generated probabilistic relations in function of the
marginal distribution functions can be easily deduced by using a well-known
property of the extreme copulas, which we recall in the next proposition [61,
64]. We first need to introduce a definition.

Definition – 6.3.1: A subset S of R2 is nondecreasing if for any (x, y) and
(u, v) in S, x < u implies y ≤ v. Similarly, a subset S of R2 is nonincreasing if
for any (x, y) and (u, v) in S, x < u implies y ≥ v.

Proposition – 6.3.2: For two random variables Xi and X j it holds that
FXi,X j = TM(FXi , FX j) if and only if the support of FXi,X j is a nondecreasing
subset of R2. Similarly, it holds that FXi ,X j = TL(FXi , FX j) if and only if the
support of FXi ,X j is a nonincreasing subset of R2.

We can now reformulate the probabilistic relation generated by continuous
diceM and diceL models.

Proposition – 6.3.3: The probabilistic relation Q = [qM
i j ] generated by a

continuous diceM model is given by

qM
i j =

∫

x:FXi(x)<FXj(x)
fXi(x) dx +

1
2

∫

x:FXi(x)=FXj(x)
fXi(x) dx . (6.13)
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The probabilistic relation Q = [qL
i j] generated by a continuous diceL model is

given by
qL

i j =
∫

x:FXi(x)+FXj(x)>1
fXi(x) dx . (6.14)

Proof:
These results follow directly from Proposition 6.3.2 and they are illustrated in
Figure 6.3. The left-hand side of Figure 6.3 represents the support of FXi,X j =
min(FXi , FX j) for the not further defined continuous c.d.f. FXi and FX j . From
the figure, it is obvious that

qM
i j = FXi(t1) + (1 − FXi(t4)) +

1
2 (FXi(t3)− FXi(t2)) ,

which is also given by (6.13).

t3t2 t4 Xi

X j

t5 Xi

X j

t1

Figure 6.3: Nondecreasing and nonincreasing supports of FXi,X j .

The right-hand side of Figure 6.3 represents the support of FXi ,X j = max(0, FXi
+FX j − 1) for the not further defined continuous c.d.f. FXi and FX j . From the
figure, it is obvious that

qL
i j = 1 − FXi(t5) ,

which is also given by (6.14).
It is interesting to note that, although the random variables Xi and X j are

continuous, their coupling with the TM- or TL-copula is no longer continuous,
as left-continuity of FXi,X j is not satisfied.

In Figures 6.4 and 6.5 we show a graphical interpretation of (6.13) and (6.14),
using the marginal c.d.f. of Xi and X j. The definition (6.13) comes down to
summing the interval lengths of {FXi(x) | FXi(x) < FX j(x), x ∈ R} plus one
half the interval lengths of {FXi(x) | FXi(x) = FX j(x), x ∈ R}. For Figure 6.4
we thus obtain

qM
i j = t1 + t3 +

t2
2 .



“main” — 2005/9/15 — 7:22 — page 115 — #137
i

i

i

i

i

i

i

i

6.3. Continuous diceM and diceL models 115

The definition (6.14) comes down to summing the interval length of {FXi(x) |
FXi(x) + FX j(x) > 1, x ∈ R}. For Figure 6.5 we then obtain

qL
i j = t4 = 1 − t5 .

{

{

}

Figure 6.4: Continuous diceM model.

FX
t3

t2

t1

FXi

FX j

FXi

FX j 0 x

{ }

Figure 6.5: Continuous diceL model.

FX

t4
t5

FX j

FXi

FXi

FX j 0

1
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Success is dependent on effort.

— SOPHOCLES

T he sun, with all those planets revolving around it
and dependent on it, can still ripen a bunch of grapes

as if it had nothing else in the universe to do.

— GALILEO GALILEI
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The games we introduce in this chapter can be seen as variants of the dice
game that was introduced in Chapter 5. The only difference between the games
is the copula used for determining the winning probabilities between two dice.
Instead of coupling the marginal distribution functions with the TP-copula as
was implicitly done in Chapter 5 obtaining independent dice, we now couple
them with the TM- or TL-copula. As the independence is lost, it is no longer
convenient to think of the random variables as dice that are thrown. Therefore,
for clarity, we drop the notion of dice and just consider (n,σ) partitions. The
game description is completely analogous to the one in Chapter 5, except that
the probabilistic relations are different. The results in this chapter can also be
found in [27, 31].

7.1 The three probabilistic relations
The three game variants differ from each other in their definition of qi j. For
two (n,σ) partitions πi = (i1, . . . , in), π j = ( j1, . . . , jn),

(i) the first game variant defines qi j as

qP
i j =

#{(k, l) | ik > jl}
n2 +

#{(k, l) | ik = jl}
2n2 , (7.1)

(ii) the second game variant defines qi j as

qM
i j =

#{k | ik > jk}
n +

#{k | ik = jk}
2n , (7.2)

(iii) and the third game variant defines qi j as

qL
i j =

#{k | ik > jn−k+1}
n +

#{k | ik = jn−k+1}
2n . (7.3)

The first (second, third) game variant is denoted as an (n,σ)P game ((n,σ)M
game, (n,σ)L game). Here, P refers to the product copula, M to the minimum
copula and L to the Łukasiewicz copula, which are the respective copulas used
for the coupling of the random variables [64], see also the previous chapter
(representations (6.7) and (6.9)). Note that the (n,σ)P game is precisely the
(n,σ) game that was considered in Chapter 5. As one can see from Figure 7.1 it
is no coincidence that random variables coupled by the TM-copula (TL-copula)
are often called comonotonic (countermonotonic).

Consider e.g. the (4, 16) partitions π1 = (1, 2, 5, 8) and π2 = (2, 3, 5, 6).
Figure 7.1 shows graphically, for each considered game variant, which parts of
the partitions have to be compared. We obtain qP

12 = (0 + 0.5 + 2.5 + 4)/16 =

7/16, qM
12 = 0 + 0 + 1/8 + 1/4 = 3/8 and qL

12 = 0 + 0 + 1/4 + 1/4 = 1/2.
Clearly, in strict sense the dice metaphor only applies to the case of the TP-
copula. Indeed, for the extreme copulas TM and TL the pairwise comparison of
dice reduces to the pairwise comparison of ordered lists, in the sense that for
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two such ordered lists, each element of the first list is compared to exactly one
element of the second list, where the order of the elements determines which
elements are compared to each other. This is why we drop the use of the term
dice in this chapter, as we only consider the last two game types. When it is
better suited to explicitly mention the partitions defining qi j, we will use the
notation Qπi,π j , which is the same notation as was used in Chapter 5.

6
5
3

8
5
2

6
5
3
2

8
5
2
1

6
5
3
2

8
5
2

π2

1

TM TLTP
π2 π2 π1π1π1

1 2

Figure 7.1: The three game types for a specific example.

In the next two sections, the optimal strategies of the (n,σ)M games and the
(n,σ)L games are obtained. Both sections start with a subsection that bundles
the results, after which a subsection follows in which these results are proven.

7.2 Optimal strategies for (n,σ)M games
7.2.1 Results
The following lemma states a remarkable result about the integers occurring as
parts of an optimal strategy in an (n,σ)M game.

Lemma – 7.2.1: The only optimal strategy in an (n,σ)M game, with n ≥ 3,
for which the highest part is strictly greater than 5 is (2, 4, 6), a strategy of the
(3, 12)M game.

The above lemma will be crucial in our proof of the following theorem.

Theorem – 7.2.2: An (n,σ)M game has optimal strategies if and only if one
of the following three mutually exclusive conditions is satisfied.

(i) n ≤ 2

(ii) (n,σ) = (3, 12)

(iii) n > 2 and there exist t1, . . . , t5 ∈ N such that they are a solution of the
following system:























t1 + t2 + t3 + t4 + t5 = n
t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ

t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5
t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5
t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)

(7.4)
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We are also able to describe the optimal strategies of the (n,σ)M games. We
first handle some special cases.

Proposition – 7.2.3:

1. The (1,σ)M game: the unique strategy (σ) is optimal.

2. The (2,σ)M game: all bσ
2 c strategies are optimal.

3. The (3, 12)M game: (2, 4, 6) is the only optimal strategy.

All other optimal strategies are identified in the next proposition.

Proposition – 7.2.4: All optimal strategies of (n,σ)M games that are not
covered by Proposition 7.2.3 have multiplicity representation (1t12t23t3 4t45t5),
where (t1, . . . , t5) is a solution of (7.4).

However, a closed formula expressing the number of optimal strategies of
an arbitrary (n,σ)M game has not yet been found.

Example – 7.2.5:
The (5, 16)M game has 37 strategies and only one optimal strategy, namely
π = (2, 2, 3, 4, 5) for which (t1, t2, t3, t4, t5) = (0, 2, 1, 1, 1). One can easily
verify that conditions (7.4) are satisfied for π . Moreover, none of the other
(5, 16) partitions satisfy these conditions. J

7.2.2 Proof
We start this subsection by introducing increment and decrement operations,
which will be essential in the subsequent proof. The following definitions were
already introduced in Chapter 5, however they are repeated here for clarity.
Any (n,σ) partition π2 can be constructed starting from any (n,σ) partition
π1 using increment/decrement operations. An increment/decrement opera-
tion on an (n,σ) partition is an operation in which one part of the partition is
increased by 1 (the increment operation) while a second part is decreased by
1 (the decrement operation), resulting in another (n,σ) partition. In the case
of the (n,σ)M game, we represent an (n,σ) partition as a nondecreasingly or-
dered column of integers and we apply an increment or decrement operation
to a specific row. Consider e.g. the (5, 12) partitions π1 = (1, 1, 3, 3, 4) and
π2 = (1, 1, 2, 3, 5) (for which qM

12 = 1/2):

π1 π1
1 1
1 1
3 3
3 3
4 4

→

π1 π2
1 1
1 1
3 2
3 3
4 5
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We see that the increment operation is applied to row 5 and the decrement op-
eration to row 3. For brevity, we say that row 5 is incremented and row 3 is
decremented. In the present case, row 4 cannot be decremented instead of row
3, since the then obtained column of integers would no longer be nondecreas-
ing. Through a concatenation of these increment/decrement operations, any
(n,σ) partition π2 can be obtained from the partition π1. We can restrict these
concatenations in the sense that once a row has been incremented (resp. decre-
mented), it cannot be decremented (resp. incremented). Indeed, an increment
operation followed later by a decrement operation (and vice versa) applied to
the same row cancel each other out and can therefore be ignored. A concatena-
tion of increment/decrement operations transforming π1 into π2 will be called
a (π1, π2) transformation.

Let νi (resp. νd) denote the number of different incremented (resp. decre-
mented) rows in the (π1, π2) transformation. We then have that Qπ1 ,π2 >
1/2 ⇔ νi < νd. This is easily seen by noting that νi (resp. νd) is nothing
else but #{ j | i j < i′j} (resp. #{ j | i j > i′j}). In general it thus holds that

Qπ1 ,π2 =
1
2 − νi − νd

2 n . (7.5)

We illustrate (7.5) on some more examples.
Example – 7.2.6:
(i) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 3, 3, 5, 6).

The transformation of π1 in π2 goes (e.g.) as follows:

π1 π1
2 2
3 3
4 4
4 4
5 5

→

π1 π
(1)
1

2 1
3 3
4 4
4 5
5 5

→

π1 π2
2 1
3 3
4 3
4 5
5 6

We obtain νi = νd = 2 and therefore Qπ1,π2 = 1/2.

(ii) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 1, 5, 5, 6).
The transformation of π1 in π2 now goes (e.g.) as follows:

π1 π1
2 2
3 3
4 4
4 4
5 5

→

π1 π
(1)
1

2 1
3 3
4 4
4 5
5 5

→

π1 π
(2)
1

2 1
3 2
4 4
4 5
5 6

→

π1 π2
2 1
3 1
4 5
4 5
5 6

Here, we obtain νi = 3 and νd = 2, which implies Qπ1 ,π2 = 1/2 −
1/(10). J

The above reasoning will be applied below. We discuss all (n,σ) partitions by
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considering the next three cases. After these cases have been considered, we
then conclude by determining the maximum value for the parts of an optimal
strategy in an (n,σ)M game.
Case 1: n ≤ 2.

When n = 1 there is only one (n,σ) partition, when n = 2 it is obvious
that all (n,σ) partitions play a draw. Indeed, for two (2,σ) partitions π1 =
(a1,σ − a1) and π2 = (b1,σ − b1), a1 ≤ b1, it holds that either σ − a1 > σ −
b1 when a1 < b1, or σ − a1 = σ − b1 when a1 = b1. The first two parts of
Proposition 7.2.3 and (i) of Theorem 7.2.2 are therefore already proven.
Case 2: Partitions satisfying

(∃ j > 1) (t j+1 > 0 ∧ n ≥ 2 t j + 3 + t j−1) . (7.6)

These partitions are not optimal. Indeed, construct π2 starting from π1 by
decrementing all t j parts having value j by 1, decrementing a part having
value j + 1 by two and incrementing t j + 2 other parts from π1, all different
from j− 1. This transformation can be done using increment/decrement oper-
ations. The idea behind the transformation is that there will be two decrement
operations applied to the row on which the first occurrence of j + 1 is situated
in the original partition π1, while all increment operations are applied to differ-
ent rows. Using (7.5) we obtain that Qπ1 ,π2 = (n − 1)/(2n) and π1 is therefore
not optimal. Essential for this construction is that (7.6) holds, as this condi-
tion must be satisfied in order to be able to do all the increment operations on
different rows.

Example – 7.2.7:
Consider the (8, 23) partition π1 = (1, 2, 2, 3, 3, 3, 4, 5). Condition (7.6) is sat-
isfied for j = 4. If we choose π2 = (2, 3, 3, 3, 3, 3, 3, 3), we obtain Qπ1,π2 =
(n − 1)/(2n) = 7/(16) < 1/2.

π1 π1
1 1
2 2
2 2
3 3
3 3
3 3
4 4
5 5

→

π1 π
(1)
1

1 1
2 2
2 3
3 3
3 3
3 3
4 3
5 5

→

π1 π
(2)
1

1 1
2 3
2 3
3 3
3 3
3 3
4 3
5 4

→

π1 π2
1 2
2 3
2 3
3 3
3 3
3 3
4 3
5 3

In the last transformation, we see that the decremented part is again on the row
where the first occurrence of j + 1 is situated in π1, which is the reason why
Qπ1,π2 < 1/2. J

Case 3: All partitions not yet covered above are optimal.
These partitions satisfy

n ≥ 3 ∧ (∀ j > 1) (t j+1 > 0 ⇒ n < 2 t j + 3 + t j−1) . (7.7)
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Before presenting the proof, we fix some notation. We say that an increment or
decrement operation yields a decrementable (resp. incrementable) row, if after
the increment or decrement operation a row becomes available for a decrement
(resp. increment) operation and that row was not available before the incre-
ment or decrement operation was performed. Consider e.g. π1 = (2, 3, 3, 5).
It holds that incrementing row 3 yields an incrementable row (namely row 2)
while incrementing row 4 does not yield an incrementable or decrementable
row. Indeed, by incrementing row 3 we obtain π ′

1 = (2, 3, 4, 5) and in this
partition row 2 is incrementable while it was not incrementable in partition
π1. Incrementing row 4 yields π ′′

1 = (2, 3, 3, 6) and all incrementable or decre-
mentable rows are the same for π1 and π ′′

1 . We will also use the notions of
first increment (resp. decrement) operation on a row and first increment (resp.
decrement) operation on the same row. The former denotes an increment (resp.
decrement) operation done on a row that has not yet been incremented or
decremented in the process of transforming π1 into π2. The latter denotes the
increment (resp. decrement) operation in the transformation step in which it
happens for the first time that a row is incremented (resp. decremented) for a
second time.

We now prove that all (n,σ) partitions π1 satisfying (7.7) are optimal strate-
gies. Suppose that there exists an (n,σ) partition π2 that wins from π1. Par-
tition π2 can again be obtained from partition π1 using increment/decrement
operations. From (7.5) we know that the number of incremented rows must be
higher than the number of decremented rows. We now show that this implies
that (7.6) holds, which contradicts (7.7).

Notice first that if (7.6) would be satisfied then there exists an (n,σ) par-
tition π2 that wins from π1 such that there exists a (π1, π2) transformation in
which the first decrement on the same row happens earlier than the first (if
any) increment operation on the same row. Conversely, when there exists a
(π1, π2) transformation such that the first decrement on the same row happens
earlier than the first (if any) increment on the same row, then (7.6) must hold.

Since we suppose that π1 is not optimal, the only case in which (7.6) would
not be satisfied is when for all (n,σ) partitions π2 that win from π1, all possible
(π1, π2) transformations would be such that the first increment on the same
row happens earlier or at the same time as the first decrement on the same
row. We therefore only need to show that a first increment on the same row
is useless for obtaining rows that can be decremented and also for obtaining
rows that can be incremented for the first time. In the next paragraph, we will
show that an increment on the same row can only yield another row that has
already been incremented. As the number of incremented rows must be higher
than the number of decremented rows, it is therefore never necessary for the
first increment on the same row to happen earlier or at the same time as the
first decrement on the same row.

It is obvious that, in general, not all rows can be used for an increment. For
example, for the partition π = (3, 3, 3) only the third row can be incremented.
However, a first increment on a row can yield a row that can be incremented
for the first time. For example, decrementing the first row and incrementing
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the last row of π results in π ′ = (2, 3, 4). The increment of row 3 makes it
possible to use row 2 of π ′ for an increment operation. This was impossible for
partition π . A second increment on the same row, however, never yields a row
that can be incremented for the first time. It is also obvious that an increment
operation never yields a decrementable row.

As Qπ1 ,π2 < 1/2, the above reasoning shows that there always exists a
(π1, π2) transformation in which the second decrement on a certain row hap-
pens before the second increment (if any) on some other row. But this is im-
possible, since (7.7) would then not be satisfied.

As Case 2 proved that all (n,σ) partitions, with n ≥ 3, not satisfying (7.7)
are not optimal, Step 3 proves that an (n,σ) partition, with n ≥ 3, is optimal if
and only if (7.7) is satisfied.

We now determine a maximum value µ for the parts of an optimal strategy
π1 in any (n,σ)M game with n ≥ 3.

First of all, it can be easily verified that π1 = (2, 4, 6) is the only optimal
strategy in the (3, 12)M game, which implies µ > 5.

Note that when an integer j > 1 exists such that t j−1 = t j = 0 and t j+1 6= 0,
it holds that (7.7) is not satisfied for this value j and the partition therefore is
not an optimal strategy. We can therefore assume t j−1 = t j = 0 ⇒ t j+1 = 0,
for any j > 1. This implies that n ≥ dµ/2e and that there are at least dµ/2e ≥ 3
distinct parts in π1. When ti 6= 0 for all 2 ≤ i ≤ 6, one can verify that (7.7) is not
satisfied. Suppose therefore for some 1 < i < 6 that ti = 0 and ti+1 6= 0, then it
must hold that n < 3 + ti−1. As there are at least 3 distinct parts, it holds that
n− ti−1 ≥ 2. This in turn implies that n = 2 + ti−1, which implies that there are
exactly three distinct numbers in the partition, implying µ ≤ 6. When µ = 6,
the fact that there are exactly three distinct numbers implies that t2i−1 = 0 and
t2i > 0, for i ∈ {1, 2, 3}. As n < 3 + t2, n < 3 + t4 and n = t2 + t4 + t6 we obtain
t2 = t4 = t6 = 1, resulting in π1 = (2, 4, 6). Note that π1 clearly satisfies (7.7).

The above reasoning proves Lemma 7.2.1 and also the third part of Propo-
sition 7.2.3.

The above results can now be combined to prove Proposition 7.2.4. Indeed,
from the above reasoning it follows that an (n,σ) partition π1 is optimal if
and only if either n < 3, or (7.7) holds. If n ≥ 3 and π1 6= (2, 4, 6), then
we also know from the above reasoning that the optimal strategy contains no
parts strictly greater than 5 and therefore has as multiplicity representation
(1t12t23t34t4 5t5). We can now conclude the proof of Proposition 7.2.4 by making
the following remarks. Firstly, it is obvious that

t1 + t2 + t3 + t4 + t5 = n , t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ , (7.8)

is equivalent to saying that the partition is an (n,σ) partition and that it con-
tains no parts strictly greater than 5. Secondly, the three other conditions







t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5
t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5
t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)
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are merely a restatement of (7.7) using (7.8). This proves Proposition 7.2.4.
Theorem 7.2.2 now follows immediately.

7.3 Optimal strategies for (n,σ)L games
7.3.1 Results
While not all (n,σ)P or (n,σ)M games have an optimal strategy, the situation
is different for (n,σ)L games.

Theorem – 7.3.1: All (n,σ)L games have at least one optimal strategy.

The exact characterization of these optimal strategies in an (n,σ)L game is
given by the following proposition.

Proposition – 7.3.2: Consider an (n,σ) partition π = (i1, i2, . . . , in) and let

a =
⌊n

2
⌋

+ 1 , b =
⌊σ − n

a
⌋

+ 1 , c =

{

n + 1 − bσ−n
b−1 c , when b 6= 1 ,

n + 1 − (σ − n) , when b = 1 . (7.9)

The (n,σ) partition π is an optimal strategy of an (n,σ)L game if and only if
one of the following four mutually exclusive conditions holds:

(i) σ − n ≤ bn/2c and:

- π = (1c−12n−c+1) .

(ii) (n,σ) = (n, 2n), n ≥ 1 and:

- π = (1m2(n−2m)3m), m ∈ {0, 1, . . . , b n
2 c} .

(iii) (n,σ) = (2l,σ), l > 0, σ 6= 2n, σ > 3l and:

- (ic = b ∧ σ 6= l(b + 2) + b − 1) , or
- il+1 ≥ b + 1, or
- π = (1l−1b2(b + 1)l−1), implying (n,σ) = (2l, l(b + 2) + b − 2) .

(iv) (n,σ) = (2l + 1,σ), l ≥ 0, σ 6= 2n, σ > 3l + 1 and:

- ic = b, or
- π = (1lb1(b + 1)l), implying (n,σ) = (2l + 1, l(b + 2) + b) .

Example – 7.3.3:

(i) The (6, 17)L game has 44 strategies of which 5 are optimal: (134261),
(134152), (12214251), (123143) and (112243). Note that for this game
b = 3 and it therefore holds that σ = l(b + 2) + b − 1 (with l = 3),
which implies that only the partitions for which il+1 ≥ b + 1 are optimal
strategies.
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(ii) The (8, 23)L game has 146 strategies and only one optimal strategy, given
by (1345). Indeed, b = c = 4 and there are no strategies satisfying il+1 =
b + 1.

(iii) The (9, 23)L game has 123 strategies of which two are optimal: (1237)
and (143144). As b = c = 3, the first partition corresponds to the case
ic = b while the second one is of the form (1lb1(b + 1)l). J

We can also state the number of optimal strategies in function of p(N, M, n),
which was introduced in Definition 1.4.6.

Proposition – 7.3.4: Let pn(M, N) = ∑N
i=0 p(N, M, N − i)p(N, n − M, i)

and let
Σ1 = σ − n − bσ − n

b − 1 c(b − 1) , Σ2 = σ − l(b + 2) , (7.10)

with b and c defined in (7.9). The number of optimal strategies in an (n,σ)L
game, here denoted as ν(n,σ), is then given in one of the following 5 mutually
exclusive cases (l > 0).

(i) σ − n ≤ bn/2c ∨ n = 1:
ν(n,σ) = 1 .

(ii) (n,σ) = (n, 2n)∧ n > 1:
ν(n,σ) = b n

2 c + 1 .

(iii) (n,σ) = (2l,σ)∧σ = l(b + 2) + b − 1 ∧σ > 3l:
ν(n,σ) = pn(l, Σ2) .

(iv) (n,σ) = (2l,σ)∧σ 6= 2n ∧ l(b + 2) + b − 1 > σ > 3l:
ν(n,σ) = pn(c − 1, Σ1) + pn(l, Σ2) + d l−c

l+1−ceb σ
l(b+2)+b−2c .

(v) (n,σ) = (2l + 1,σ)∧σ 6= 2n ∧σ > 3l + 1:
ν(n,σ) = pn(c − 1, Σ1) + d l+1−c

l+2−ceb σ
l(b+2)+bc .

7.3.2 Proof
In the next five cases Theorem 7.3.1 and Proposition 7.3.2 are proven and there-
after, using the results obtained in these cases, Proposition 7.3.4 is proven.
Throughout this subsection, when using an (n,σ) partition π1 (resp. π2), its
parts will be written as i j (resp i′j), for j ∈ N[1, n].
Case 1: σ − n ≤ bn/2c.

We start by considering the special case of (n,σ)L games for which σ − n ≤
bn/2c, corresponding to (i) of Proposition 7.3.2. Note that this condition is
equivalent to b = 1. It is obvious that π1 = (1c−12n−c+1), with c = n + 1 −
(σ − n), is an (n,σ) partition and that π1 wins from any other (n,σ) partition
π2. Indeed, let k = #{ j | i′j = 1} and m = #{ j | i′j > 1} = n − k. As
π2 6= π1 it holds that k ≥ c > dn/2e and Qπ2 ,π1 = (2m + (c − m − 1))/(2n) =
(n − k + c − 1)/(2n) < 1/2.
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In the remainder, we will assume σ − n > bn/2c and therefore b > 1. A
partition will be represented graphically as a Ferrers graph, which was intro-
duced in Section 1.4. Although this representation is not essential in the proof,
it helps to visualize the meaning of some variables that will be used.

For an (n,σ) partition π1 we utilize the following values, which were al-
ready introduced in Proposition 7.3.2 (recall that b > 1):

a =
⌊n

2
⌋

+ 1, b =
⌊σ − n

a
⌋

+ 1, c = n + 1 −
⌊σ − n

b − 1
⌋

. (7.11)

In words, b denotes the highest possible value for idn/2e and c denotes the low-
est possible value j such that i j = b is possible. Therefore, an (n,σ) partition
π1 for which idn/2e = b surely exists.
Case 2: n = 2l + 1 ∧ il+1 < b, or, n = 2l ∧ il < b ∧ il+1 < b + 1.

When n = 2l + 1, any (n,σ) partition π1 for which il+1 < b loses from any
partition π2 for which i′l+1 = b and is therefore not an optimal strategy. Indeed,
it then holds that i′n− j > i j+1, for any 0 ≤ j ≤ l, which implies Qπ2 ,π1 ≥
(l + 1)/n > 1/2. When n = 2l, then any partition π1 for which il < b and
il+1 < b + 1 loses from any partition π2 for which i′l = b. Indeed, it then
holds that i′n− j > i j+1, for any 0 ≤ j < l and i′l ≥ il+1, which again implies
Qπ2,π1 > 1/2. We can therefore already exclude these partitions π1 as they are
not optimal strategies. Note that this does not exclude a priori the possibility
for an (n,σ)L game to have optimal strategies.
Case 3: (n,σ) = (n, 2n).
In this case, all optimal strategies π1 are given by

π1 = (1m2n−2m3m), m ∈ {0, 1, . . . , bn/2c} . (7.12)

We first prove that the strategies of type (7.12) are optimal. Let π2 be another
(n, 2n) partition, with k′ = #{ j | i′j = 1} and m′ = #{ j | i′j > 2}. As σ = 2n, we
have that k′ ≥ m′. When m′ ≤ m, we obtain Qπ2,π1 ≤ (2m + (n − 2m))/(2n) =
1/2. When m′ > m, we obtain

Qπ2 ,π1 ≤ (2m′ + n − k′ − m′)/(2n) ≤ 1/2 . (7.13)

We now prove that the strategies (7.12) are the only optimal strategies in the
(n, 2n)L game. For any π2, with k′ and m′ as defined above, such that k′ >
m′ > 0, it follows from (7.13) that Qπ2,π1 < 1/2. When m′ = 0 it holds that
π2 = (2n), which is of type (7.12). When k′ = m′ partition π2 is of type (7.12).
This proves (ii) of Proposition 7.3.2.

We now subdivide the not yet covered (n,σ)L games into those where n is
even and those where n is odd.
Case 4: n = 2l ∧σ 6= 2n ∧ b 6= 1.
Subcase 4.1: (2l,σ) partitions π1 such that il+1 ≥ b + 1.

Before subdividing the (2l,σ) games further, we consider these partitions
π1, which can occur in any of the still to be considered (2l,σ) games. All (2l,σ)
partitions π1 for which il+1 ≥ b + 1, if there are any, are optimal strategies.
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Indeed, suppose such a partition π1 exists. For any (2l,σ) partition π2 it holds
that i′l < b + 1. Therefore, in− j > i′j+1, for any 0 ≤ j < l, which implies
Qπ1,π2 ≥ 1/2. This corresponds to the second part of (iii) of Proposition 7.3.2.

Subcase 4.2: (n,σ) games satisfying

σ = l(b + 2) + b − 1 . (7.14)

At least one (n,σ) partition π1 satisfying il+1 ≥ b + 1 exists and these (n,σ)
partitions comprise all optimal strategies. Indeed, any partition π2 for which
i′l+1 < b + 1 loses from the partition π1 = (1l−1b1(b + 1)l). This explains the
condition σ 6= l(b + 2) + b − 1 in the first part of (iii) of Proposition 7.3.2.

Example – 7.3.5:
Consider the (8, 27)L game, which has 352 strategies of which 10 are optimal,
and for which (7.14) clearly holds (b = b19/5c + 1 = 4). The Ferrers graph
(with some annotations) for the partition (13b1(b + 1)4) is shown in Figure 7.2.

n = 8
b = 4

Figure 7.2: Ferrers graph for the (8, 27) partition (1, 1, 1, 4, 5, 5, 5, 5).
J

We now investigate the last remaining class of (2l,σ)L games.
Subcase 4.3: (n,σ) games for which σ 6= l(b + 2) + b − 1.

We only need to consider (n,σ) partitions for which il = il+1 = b and b 6= 1,
as the other types of (n,σ) partitions were already encountered before. The
fact that (7.14) is not satisfied implies that for any two partitions π1 satisfying
il = b and π2 satisfying i′l+1 ≥ b + 1 it holds that Qπ1 ,π2 = 1/2. It therefore
suffices to investigate Qπ1 ,π2 with π1 satisfying il = il+1 = b and π2 satisfying
i′l = i′l+1 = b. Note that the strict inequality

σ < l(b + 2) + b − 1 (7.15)

must then hold. Indeed, σ > l(b + 2) + b − 1 implies that b < (σ − n + 1)/(l +
1) ≤ b(σ − n + l + 1)/(l + 1)c = b, which is of course impossible.

We first introduce a useful lemma, considering both n even and n odd,
which will make the subsequent proof and the proof of Case 5 simple.

Lemma – 7.3.6: For an (n,σ) partition π1 (n even or odd) with idn/2e =
idn/2e+1 = b > 1 (b defined by (7.11)), let s = min{ j | i j = b} and t = max{ j |
i j = b}. It then holds that t ≥ n + 2 − s if s < dn/2e ∧ b > 2, and t ≥ n + 1 − s
if s = dn/2e ∨ b = 2.
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Proof:
Let n = 2l (resp. n = 2l + 1) when n is even (resp. odd). It holds that c ≤ s ≤
dn/2e (c defined by (7.11)) and t ≥ dn/2e + 1. By definition of s and t it must
hold that

σ ≥ s − 1 + (t − s + 1)b + (n − t)(b + 1) , (7.16)

or equivalently,
t ≥ n −σ + nb − (s − 1)(b − 1) . (7.17)

First assume n is even. As (7.15) holds, we obtain (adding s to both sides
of (7.17))

t + s > n − l(b + 2)− b + 1 + nb − (s − 1)(b − 1) + s ,

which simplifies to
t + s > n + (l − s)(b − 2) , (7.18)

from which the desired inequalities immediately follow.
Now assume n is odd. From the tautology b − 1 < b, it follows that b(σ −

n)/(l + 1)c < b, which implies σ − n < (l + 1)b, finally implying σ < l(b +
2) + b + 1. Together with (7.17) this implies that

t + s > n + (l + 1 − s)(b − 2) , (7.19)

from which the desired inequalities again follow.
We now continue with Subcase 4.3. Suppose i′c = i′l+1 = il = il+1 = b, with

n = 2l. Let r = max{ j | i′j = b} and let s and t be defined as in the above
lemma. Hence, the parts of π1 and π2 satisfy







i j < b, if 1 ≤ j < s ,
i j = b, if s ≤ j ≤ t ,
i j > b, if t < j ≤ n ,











i′j < b, if 1 ≤ j < c ,
i′j = b, if c ≤ j ≤ r ,
i′j > b, if r < j ≤ n .

It now holds that

Qπ2,π1 =
1
n

(

max(s − 1, n − r)+

1
2
(

min(n + 1 − c, t)− max(s − 1, n − r)
)

)

=
1

2n
(

min(n + 1 − c, t) + max(s − 1, n − r)
)

.

First consider s = c. Using Lemma 7.3.6, we then obtain Qπ2 ,π1 = (n + 1 −
c + s − 1)/(2n) = 1/2. Partitions π1 and π2 satisfying ic = il+1 = b resp.
i′c = i′l+1 = b therefore play a draw. Next, consider s > c, implying

Qπ2,π1 =
1

2n
(

min(n + 1 − c, t) + s − 1
)

.
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If t ≥ n + 1 − c, then Qπ2,π1 = (n + s − c)/(2n), which implies Qπ2,π1 > 1/2
for s 6= c. If t < n + 1 − c then it holds that Qπ2 ,π1 = (t + s − 1)/(2n) ≥
1/2 (again using Lemma 7.3.6). Moreover, when s < l or b > 2, the same
lemma implies Qπ2 ,π1 > 1/2. The above already proves the first part of (iii) of
Proposition 7.3.2.

Partitions satisfying s = l and the case b = 2 need more investigation, to see
if there are other optimal strategies possible. We therefore investigate when it
holds that Qπ2 ,π1 = 1/2, or equivalently when t + s − 1 = n. Inequality (7.16)
is then equivalent to

σ ≥ 2n + t(b − 2) . (7.20)

The definition of b from (7.11) implies b(l + 1) > σ − n and combining this
with (7.20), we obtain the strict inequality

(b − 2)(t− l) < b . (7.21)

Inequality (7.21) is only satisfied when b = 2 or when t = l + 1 (recall that b = 1
is excluded and that t ≥ l + 1). Indeed, when t − l > 1, it holds that (7.21) is
equivalent to b < 2 + 2/(t − l − 1), which can only hold when b = 2. When
b = 2 it holds that σ ≥ 2n and the definition of b then implies σ = 2n or
σ = 2n + 1. The case σ = 2n corresponds to Case 3 while σ = 2n + 1 implies
that inequality (7.15) is not satisfied. When t = l + 1, we obtain σ ≥ 2n + (l +
1)(b − 2). When σ > 2n + (l + 1)(b − 2), (7.15) is again not satisfied.

We now consider the case whereσ = 2n +(l + 1)(b− 2), t = l + 1 and s = l,
implying that π1 = (1l−1b2(b + 1)l−1). We will prove that π1 is optimal and
therewith prove the third part of (iii) of Proposition 7.3.2. Consider another
(n,σ) partition π2 with i′l = i′l+1 = b and let s′ = min{ j | i′j = b} ≤ l and
t′ = max{ j | i′j = b} > l. The parts of π1 and π2 then satisfy







i j = 1 < b, if 1 ≤ j < l ,
i j = b , if l ≤ j ≤ l + 1 ,
i j = b + 1 , if l + 1 < j ≤ n ,











i′j < b, if 1 ≤ j < s′ ,
i′j = b, if s′ ≤ j ≤ t′ ,
i′j > b, if t′ < j ≤ n .

It follows that

Qπ2 ,π1 =
1
n

(

(l − 1) +
1
2
(

min(t′ − s′ + 1, 2)
)

)

=
1
2 ,

and therefore
π1 = (1l−1b2(b + 1)l−1) (7.22)

is an optimal strategy.
The aggregation of the results from Case 4 prove (iii) of Proposition 7.3.2.

Example – 7.3.7:

(i) Consider the (6, 20)L game, for which it holds that b = 4 and c = 3.
In Figure 7.3 the Ferrers graph of each optimal strategy of the game is
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given. The optimal strategies satisfying ic = b are given by (113144),
(2244), (11214351), (124252) and (124361). Note that the fourth partition
is of type (7.22), but as c = l it is not a special case. As can be easily
seen in the Ferrers graphs, these optimal strategies differ from each other
by rearranging the Σ1 = 2 dots that can be moved around freely. The
remaining optimal strategies are those satisfying il+1 ≥ b + 1, given by
(123153), (112253), (12215261), (135162) and (135271). These latter opti-
mal strategies differ from each other by rearranging the Σ2 = 2 free dots.
Note that Σ1 and Σ2 are defined by (7.10).

Σ1 = 2

Σ2 = 2

il+1 ≥ b + 1

b = 4

Figure 7.3: Optimal strategies of the (6, 20)L game.

(ii) Consider the (12, 32)L game. We obtain that b = 3, c = 3, l(b + 2) + b −
1 = 32 = σ . The only (12, 32) partition satisfying ic = b is π1 = (12310)
and when π2 = (153146) it indeed holds that Qπ2 ,π1 > 1/2. All optimal
strategies are therefore those satisfying il+1 ≥ b + 1, given by (153146),
(142246), (15214551), (164561) and (164452).

(iii) Consider the (14, 36)L game. We now obtain that b = 3, c = 4, l(b + 2) +
b − 1 = 37 > σ . There is one (14, 36) partition satisfying ic = b, namely
(13311), and it is an optimal strategy. The other optimal strategies all
satisfy il+1 ≥ b + 1, and are given by (162147) and (174651).

(iv) Consider the (4, 22)L game. For the above 3 examples the optimal strate-
gies satisfying il+1 ≥ b always satisfied il+1 = b + 1. In general this is
not true, as is indicated by the present example, for which it holds that
b = 7 and for which the optimal strategy (12(10)2) satisfies il+1 > b + 1.
We do not explicitly specify the other optimal strategies for this game, as
they are numerous.

J

Case 5: n = 2l + 1 ∧σ 6= 2n ∧ b 6= 1.
All (n,σ) partitions π1 for which ic = b or for which il+1 = b ∧ il+2 =

b + 1 are the only optimal strategies. The proof is completely analogous to the
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proof for n even. It follows directly that all optimal strategies π1 must satisfy
the condition il+1 = b, and that such a strategy always exists. Secondly, it is
evident that partitions of type

π1 = (1lb1(b + 1)l) (7.23)

are optimal strategies and these only exist in (2l + 1, l(b + 2) + b)L games.
Finally, using Lemma 7.3.6, we obtain in a completely analogous way as in
Case 4.3 that partitions of type (7.23) are the only possible optimal strategies
that do not satisfy ic = b, and that all (n,σ) partitions that satisfy ic = b are
optimal. This proves (iv) of Proposition 7.3.2. Note that if c = l + 1, partition
(7.23) satisfies ic = b and is then not a special case.

Example – 7.3.8:
Consider the (7, 18)L game. We obtain that b = c = 3 and σ = l(b + 2) + b.
The optimal strategies are therefore given by (133143), (123441) and (112135),
the first one being of type (7.23). J

As all possible (n,σ)L games were covered in the above cases and for each
case the games always had at least one optimal strategy, we have also proven
Theorem 7.3.1.

Using the obtained descriptions of the optimal strategies, we can now state
the number of optimal strategies for any (n,σ)L game, utilizing the function
pn(M, N) = ∑N

i=0 p(N, M, N− i)p(N, n− M, i), which was already introduced
in Proposition 7.3.4. This proposition is proven below, using the previously
introduced values b and c, defined by (7.11), and Σ1 and Σ2 defined by (7.10).
The number of optimal strategies in an (n,σ)L game, here denoted as ν(n,σ),
is then given by one of the cases below.

(i) σ − n ≤ bn/2c ∨ (n,σ) = (1,σ):
ν(n,σ) = 1 .
When n = 1 there is only one strategy, namely (σ). The result forσ − n ≤
bn/2c, which is equivalent to b = 1, follows from the result of Case 1.

(ii) (n,σ) = (2,σ):
ν(n,σ) = bσ

2 c .
All strategies are optimal, this follows implicitly from the proofs of this
subsection and this case is implicitly included in Proposition 7.3.4.

(iii) (n,σ) = (n, 2n):
ν(n,σ) = b n

2 c + 1 .
This is immediately clear by counting the optimal strategies obtained in
Case 3.

(iv) (n,σ) = (2l,σ)∧σ = l(b + 2) + b − 1 ∧σ 6= 2n ∧ b 6= 1:
ν(n,σ) = pn(l, Σ2) .
This corresponds to Case 4.2. We have to count the number of (n,σ)
partitions for which il+1 ≥ b + 1. We can construct all of them by starting



“main” — 2005/9/15 — 7:22 — page 132 — #154
i

i

i

i

i

i

i

i

132 Chapter 7. Ordered List Games

with the Ferrers graph of (1l(b + 1)l) and distributing the remaining Σ2
dots in all possible combinations to obtain all Ferrers graphs of (n,σ)
partitions with il+1 ≥ b + 1 (cfr. the bottom row of Figure 7.3).

(v) (n,σ) = (2l,σ)∧σ = l(b + 2) + b − 2 ∧σ 6= 2n ∧ b 6= 1:
ν(n,σ) = pn(c − 1, Σ1) + pn(l, Σ2) + d l−c

l+1−ce .
This corresponds to Cases 4.1 and 4.3, in the case that (7.22) is a possible
strategy. Here, we have to count the number of (n,σ) partitions for which
ic = b, this is given by pn(c − 1, Σ1). We also have to count the number
of (n,σ) partitions for which il+1 ≥ b + 1, given by pn(l, Σ2). Finally we
also have to take into account the special case (7.22). Unless c = l, this
partition has not yet been counted.

(vi) (n,σ) = (2l,σ)∧σ < l(b + 2) + b − 2 ∧σ 6= 2n ∧ b 6= 1:
ν(n,σ) = pn(c − 1, Σ1) + pn(l, Σ2) .
This corresponds to Cases 4.1 and 4.3, when (7.22) is not a possible strat-
egy. This case and the previous case are combined into (iv) of Proposi-
tion 7.3.4.

(vii) (n,σ) = (2l + 1,σ)∧σ = l(b + 2) + b ∧σ 6= 2n ∧ b 6= 1:
ν(n,σ) = pn(c − 1, Σ1) + d l+1−c

l+2−ce .
This corresponds to Case 5, in the case that (7.23) is a possible strategy.
Here, we have to count the number of (n,σ) partitions for which ic =
b and also the special partition (1lb1(b + 1)l), which has not yet been
counted unless c = l + 1.

(viii) (n,σ) = (2l + 1,σ)∧σ < l(b + 2) + b ∧σ 6= 2n ∧ b 6= 1:
ν(n,σ) = pn(c − 1, Σ1) .
This corresponds to Case 5, when (7.23) is not a possible strategy. Note
that the current case and the previous case are combined into (v) of
Proposition 7.3.4.
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σ − n
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61
4 1 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 64 72 84 94 108 120 136 150 169
5 1 1 2 3 5 7 10 13 18 23 30 37 47 57 70 84 101 119 141 164 192 221 255 291 333
6 1 1 2 3 5 7 11 14 20 26 35 44 58 71 90 110 136 163 199 235 282 331 391 454 532
7 1 1 2 3 5 7 11 15 21 28 38 49 65 82 105 131 164 201 248 300 364 436 522 618 733
8 1 1 2 3 5 7 11 15 22 29 40 52 70 89 116 146 186 230 288 352 434 525 638 764 919
9 1 1 2 3 5 7 11 15 22 30 41 54 73 94 123 157 201 252 318 393 488 598 732 887 1076

10 1 1 2 3 5 7 11 15 22 30 42 55 75 97 128 164 212 267 340 423 530 653 807 984 1204
11 1 1 2 3 5 7 11 15 22 30 42 56 76 99 131 169 219 278 355 445 560 695 863 1060 1303
12 1 1 2 3 5 7 11 15 22 30 42 56 77 100 133 172 224 285 366 460 582 725 905 1116 1380
13 1 1 2 3 5 7 11 15 22 30 42 56 77 101 134 174 227 290 373 471 597 747 935 1158 1436
14 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 175 229 293 378 478 608 762 957 1188 1478
15 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 230 295 381 483 615 773 972 1210 1508
16 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 296 383 486 620 780 983 1225 1530
17 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 384 488 623 785 990 1236 1545
18 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 489 625 788 995 1243 1556
19 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 626 790 998 1248 1563
20 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 791 1000 1251 1568
21 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1001 1253 1571
22 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1254 1573
23 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1574
24 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575
25 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Table7.1:N
um

berof
(n,σ

)partitions.
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σ − n
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 2 2 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 2 2 3 4 3 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 2 3 3 4 4 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 2 2 3 3 3 5 5 3 4 2 1 2 1 0 0 0 0 0 0 0 0 0 0
7 1 1 2 2 3 3 3 4 6 5 4 5 3 1 1 1 0 0 0 0 0 0 0 0 0
8 1 1 2 2 3 3 3 4 4 6 6 5 6 4 2 2 1 1 0 0 0 0 0 0 0
9 1 1 2 2 3 3 3 4 4 4 7 7 5 7 5 3 3 1 0 0 0 0 0 0 0

10 1 1 2 2 3 3 3 4 4 4 5 8 7 6 8 6 4 4 2 1 1 1 0 0 0
11 1 1 2 2 3 3 3 4 4 4 5 5 8 8 7 9 7 5 5 3 1 1 0 0 0
12 1 1 2 2 3 3 3 4 4 4 5 5 5 9 9 7 10 8 6 7 4 2 2 1 0
13 1 1 2 2 3 3 3 4 4 4 5 5 5 6 10 9 8 11 9 7 8 5 3 3 1
14 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 10 10 9 12 10 8 9 7 4 4
15 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 11 11 9 13 11 9 11 8 5
16 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 12 11 10 14 12 10 12 9
17 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 12 12 11 15 13 11 13
18 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 13 13 11 16 14 12
19 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 14 13 12 17 15
20 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 14 14 13 18
21 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 15 15 13
22 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 16 15
23 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 16
24 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
25 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

Table 7.2: Number of optimal strategies for (n,σ)M games.

σ − n
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 1 2 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 3 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
5 1 1 1 1 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
6 1 1 1 1 1 1 4 1 1 0 1 0 2 0 0 1 0 0 1 0 0 0 0 0 0
7 1 1 1 1 1 1 1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
8 1 1 1 1 1 1 1 1 5 1 1 0 1 0 1 0 2 0 0 0 0 0 0 0 1
9 1 1 1 1 1 1 1 1 1 5 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1

10 1 1 1 1 1 1 1 1 1 1 6 1 1 0 1 0 1 0 1 0 2 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1 1 6 0 0 0 0 0 0 0 0 0 0 2 0 0
12 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 0 1 0 1 0 1 0 1 0 3
13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 0 0 0 0 0 0 0 0 0 0 0
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 0 1 0 1 0 1 0 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 0 1 0 1 0 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 0 1 0 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 0 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 0
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.3: Number of optimal strategies for (n,σ)P games.
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σ − n
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
4 1 1 1 1 3 2 2 4 5 3 7 8 6 10 14 9 16 20 15 22 30 21 32 40 31
5 1 1 1 1 1 3 1 2 2 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1
6 1 1 1 1 1 1 4 2 1 3 4 5 2 4 10 10 3 7 15 18 6 12 23 30 11
7 1 1 1 1 1 1 1 4 1 2 1 3 1 2 5 2 1 2 5 10 1 2 5 10 1
8 1 1 1 1 1 1 1 1 5 2 1 2 2 5 5 1 3 7 7 10 2 4 10 20 20
9 1 1 1 1 1 1 1 1 1 5 1 2 1 2 2 1 2 5 1 3 1 2 5 10 2
10 1 1 1 1 1 1 1 1 1 1 6 2 1 2 1 3 4 5 1 2 6 3 8 10 1
11 1 1 1 1 1 1 1 1 1 1 1 6 1 2 1 2 1 3 1 2 5 1 2 6 1
12 1 1 1 1 1 1 1 1 1 1 1 1 7 2 1 2 1 2 2 5 5 1 2 5 2
13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 2 1 2 1 2 2 1 2 5 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 2 1 2 1 2 1 3 4 5 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 2 1 2 1 2 1 3 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 2 1 2 1 2 1 2 2
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 2 1 2 1 2 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 2 1 2 1 2 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 2 1 2 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 2 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 1
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.4: Number of optimal strategies for (n,σ)L games.

T here is much pleasure to be gained from useless knowledge.

— BERTRAND RUSSEL

T heir songs are on the whole very simple and mostly
follow the familiar theme of boy-being meets

girl-being beneath a silvery moon, which then
explodes for no adequately explored reason.

— DOUGLAS N. ADAMS
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8.1. The street number 137

In this final chapter we discuss a way of partitioning standard collections
of dice, introduced in Definition 3.2.1, with each dice having the same number
of faces, into different categories based on their so-called street number. Orig-
inally, when dice-transitivity was not yet known to us, street numbers were
introduced as a way of simplifying the discovery of the exact type of transitiv-
ity associated with a dice model. For a given number n and multiple types of
known transitivity conditions, it was counted for how many standard collec-
tions of three dice with n faces the corresponding generated probabilistic rela-
tion satisfied the type of transitivity and these collections were, for each type of
transitivity, partitioned into sets on the basis of their street number (see e.g. the
three tables at the end of this chapter). When dice-transitivity was discovered,
the street number remained useful as a tool to partition a set of standard col-
lections consisting of dice with n faces. We will investigate this categorization
in the present chapter and it will lead to some nice results and combinatorial
problems. The main goal will be counting how many such standard collec-
tions have a given street number. Section 1 gives the general definition of a
street number and Section 2 then investigates the street number of standard
collections of 2 dice with n faces. In Section 3, the concept of a dual partition
set is introduced, which will lead to an interesting method to construct “step
triangles” by means of rectangles. Section 4 then briefly considers the street
number of standard collections of 3 dice with n faces. It is indicated that it be-
comes very difficult to give general results concerning the number of standard
collections of dice with n faces that have a given street number when consider-
ing collections consisting of 3 or more dice.

8.1 The street number
Definition – 8.1.1: Let (A1, A2, . . . , Am) be a standard collection with each

dice having n faces. Let (σ1,σ2, . . . ,σm) denote the sum of the numbers on dice
(A1, A2, . . . , Am). Let M = n(mn + 1)/2 be the average sum per dice. The
street number sA1 ,A2,...,Am of the collection is then defined by

sA1 ,A2,...,Am = max(|σ1 − M|, |σ2 − M|, . . . , |σm − M|) .

Standard collections of 2 (resp. 3) dice with n faces will be called standard
n-duplets (resp. standard n-triplets). An immediate observation can be made
about the boundaries of the street number.

Proposition – 8.1.2: The street number sA1 ,A2,...,Am of a standard collection
of dice with n faces, is bounded by

0 ≤ sA1,A2,...,Am ≤ (m − 1)n2

2 .

Proof:
The smallest sum of the integers on the faces of a dice that can be obtained is
the sum of the first n integers, i.e. n(n + 1)/2. This sum is (m − 1)n2/2 away
from the average M. Similarly, the highest sum is the sum of the integers in
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N[(m − 1)n + 1, mn], i.e. n((2m− 1)n + 1)/2, also at a distance of (m − 1)n2/2
from M. The lower bound can be obtained when n is even. We can then easily
construct a standard collection of dice with n faces for which the values σi are
equal to M. Indeed, attribute the mn integers to the faces of the dice as follows:
dice Ai contains the integers taken from the sets { jm + i | j ∈ N[0, n

2 − 1]} and
{nm − ( jm + i − 1) | j ∈ N[0, n

2 − 1]}. For each dice Ai we then obtain as sum
of the elements

σi =

n
2 −1

∑
j=0

( jm + i + nm − ( jm + i − 1)) = M .

We are able to state the street number of any standard collection of dice with
n faces by means of the generated probabilistic relation Q = [qP

i j]. However, we
start with a more general lemma.

Lemma – 8.1.3: Let (A1, A2, . . . , Am) be a standard collection, with Ai having
ni faces and let Q = [qP

i j] be the probabilistic relation generated by the collection
when the dice are associated with independent random variables uniformly
distributed over the elements of the respecive dice. The sum σi of the integers
on the faces of dice Ai is then given by

σi =
ni(ni + 1)

2 + ∑
j 6=i

nin jqP
i j . (8.1)

Proof:
We will count the number νi of couples (a, b) such that a ∈ Ai, b 6∈ Ai and
n ≥ a > b > 0, where n = ∑ j n j:

νi = #{(a, b) | a ∈ Ai, b 6∈ Ai, n ≥ a > b > 0} .

As we are dealing with a standard collection, the number of couples (ai, b j),
with ai ∈ Ai, b j ∈ A j and ai > b j (i 6= j), is given by nin jqP

i j. Summing
these values over all dice A j, j 6= i, yields the desired value νi, namely νi =

∑ j 6=i nin jqP
i j.

We now obtain νi in another way. Suppose Ai = (i1, i2, . . . , ini), then for
each integer i j there are exactly i j − j integers on the faces of the other dice that
are strictly smaller than i j. Therefore, νi is also given by (i1 − 1) + (i2 − 2) +
. . . + (ini − ni) = σi − ni(ni + 1)/2.

Combining both results yields the required equality for σi.
The above lemma can be immediately applied to prove the following prop-

osition.

Proposition – 8.1.4: For a standard collection (A1, A2, . . . , Am) of dice with
n faces, the street number sA1 ,A2,...,Am is given by

sA1 ,A2,...,Am = n2 max
1≤i≤m

∣

∣

∣

∣

∣

∑
j
(qP

i j −
1
2 )

∣

∣

∣

∣

∣

. (8.2)
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Proof:
Using Lemma 8.1.3, we obtain σi − M = n(n + 1)/2− n(mn + 1)/2 + ∑ j 6=in2qP

i j
= −(m − 1)n2/2 + ∑ j 6=i n2qP

i j = n2 ∑ j 6=i(qP
i j − 1

2 ). As qP
ii = 1/2, there need not

be any restriction on j.
Using the payoff matrix A = [a1

i j] as defined in Chapter 5, we can restate
the above proposition as follows.

Proposition – 8.1.5: The street number of a standard collection (A1, A2, . . . ,
Am) of dice with n faces and corresponding payoff matrix A = [a1

i j] is given by

sA1 ,A2,...,Am = n2 max
i

∣

∣

∣

∣

∣

∑
j

a1
i j

∣

∣

∣

∣

∣

. (8.3)

Note that expression (8.3) makes use of a pseudonorm defined on the ma-
trix A. It must also be noted that the concept of a street number is not applicable
to the dice models used in Chapter 5, as the constraints on the dice differ from
those in the current chapter.

For the case of standard triplets, Proposition 8.1.4 can be simplified as fol-
lows (using notations (2.1)).

Corollary – 8.1.6: For a standard n-triplet (A1, A2, A3), it holds that the
street number sA1 ,A2,A3 equals n2(γ123 −α123).

Proof:
Applying Proposition 8.1.4, we immediately obtain that the street number is
given by

sA1 ,A2,A3 = n2 max(β123 −α123, γ123 −α123, γ123 −β123)

= n2(γ123 −α123) .

When only considering standard triplets of which the corresponding prob-
abilistic relation is TM-transitive, we obtain the following interesting corollary.

Corollary – 8.1.7: If the probabilistic relation generated by a standard n-
triplet (A1, A2, A3) is TM-transitive, then the parity of the corresponding street
number sA1,A2,A3 matches the parity of n.

Proof:
This follows directly from Corollary 8.1.6 by noting that in the present case
the equality α123 = 1 − γ123 holds (see (2.35)) and therefore also sA1 ,A2,A3 =

n2(2γ123 − 1), with n2γ123 ∈ N.
We can partition all standard collections of m dice having n faces by means

of their street number. The question now arises for each street number how
many such collections have the given street number. This question turns out
to be difficult to answer with closed formulas. We start by considering the case
where m = 2.
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8.2 Partitioning standard n-duplets
From Proposition 8.1.2 if follows that the street number sA1 ,A2 of a standard
n-duplet is bounded from above by n2/2. Note that the street number is an
integer only when n is even. Suppose s1, s2 are the sum of the integers on
dice A1 resp. A2 and let M = n(2n + 1)/2 be the average sum as defined in
Definition 8.1.1. It then holds that s2 − M = M − s1, as s1 + s2 = n(2n + 1),
and the street number of any standard n-duplet is therefore given by sA1 ,A2 =
|M − s1|.

Definition – 8.2.1: The triangulated dice corresponding to a dice A1 =
(i1, i2, . . . , in), with i j > ik when j > k, is given by

Aτ
1 = (i1 − 1, i2 − 2, . . . , in − n) .

Zeroes are therefore allowed on a triangulated dice. The name triangulated
dice refers to the fact that the sum of the elements decreases by n(n + 1)/2
and these are the well-known triangular numbers. Note that each dice with
no identical elements has a unique corresponding triangulated dice and each
triangulated dice corresponds to a unique dice (in which no two elements are
equal).

Theorem – 8.2.2: The number of standard n-duplets of which the street
number equals s ≤ n2/2 is given by

p(n, n, M − s − n(n + 1)/2) ,

with p defined in Definition 1.4.6 and M the average sum of the integers.

Proof:
Note that σ1 = M − s denotes the sum of the integers on one of the dice of
such a standard duplet. We need to count the number of ways to write σ1 as
the sum of the elements of a strictly increasing row of n integers taken from
the set N[1, 2n]. This is equivalent to counting the number of corresponding
triangulated dice, in other words it is equivalent to the number of ways to write
σ1 − n(n + 1)/2 as the sum of the elements of a nondecreasing row of n integers
taken from N[0, n]. This can be reformulated as the number of partitions of
σ1 − n(n + 1)/2 into at most n parts, each less or equal to n, which can be
written using Definition 1.4.6.

8.3 Dual partition sets
By studying the Ferrers graph corresponding to an (n,σ) partition, the trans-
formation done in the proof of Theorem 8.2.2 gave the inspiration to define
a dual partition set, which consists of two partitions satisfying a certain con-
dition, and we obtained a surprising connection between the two partitions
composing a dual partition. Although it is unusual, in this section we allow
partitions to have parts equal to 0. We start with the definition.
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Definition – 8.3.1: The set of two partitions, in which we allow parts equal
to 0, the first partition having m1 parts, each part not exceeding m2, and the
second partition having m2 parts, each part not exceeding m1, such that the
sum of the elements of both partitions equals m1m2 and such that the Ferrers
graph of both partitions can be combined, using a reflection and translation, to
fill a rectangle of dimension m1 × m2, is an (m1, m2) dual partition set.

Example – 8.3.2:
The partitions (0, 0, 2, 3, 3, 4, 4) of 16 and (2, 2, 3, 5) of 12 form a (4, 7) dual
partition set. Indeed, with m1 = 4 and m2 = 7, the corresponding Ferrers
graphs can be combined to fill a rectangle with dimensions 4 × 7, as can be
seen in Figure 8.1. We see that the Ferrers graph corresponding to the partition
of 16 is first reflected around the second diagonal, after which it perfectly fits
to construct a 4 × 7 rectangle with the second Ferrers graph.

Figure 8.1: An example of a dual partition set.
J

Theorem – 8.3.3: For two partitions (i1, i2, . . . , im1) and ( j1, j2, . . . , jm2), in
which we allow parts with value zero, that together compose an (m1, m2) dual
partition set, it holds that the number sets {ik + k|k ∈ N[1, m1]} and { jk + k|k ∈
N[1, m2]} form a set partition of the number set N[1, m1 + m2].

Proof:
As both partitions form a dual partition set, we have that ik ≤ m2 and jl ≤ m1,
which implies that ik + k ≤ m1 + m2 and jl + l ≤ m1 + m2, for k ∈ N[1, m1] and
l ∈ N[1, m2]. We now prove that ik + k 6= jl + l, ∀ (k ∈ N[1, m1], l ∈ N[1, m2]).
Crucial to the proof is the fact that the rows (ik)k∈N[1,m1] and ( jl)l∈N[1,m2] are
nondecreasing.

For any k such that jk 6= 0 and jk 6= m1, it holds that i jk + jk ≤ jk + k− 1 and
i jk+1 + jk + 1 ≥ jk + k + 1. Indeed, when considering the m1 × m2 rectangle as
a matrix with as elements black dots and empty space, we see that if i jk ≥ k,
it would mean that there is a black dot on position (i jk , k) of the matrix, which
would mean that the number of empty squares in column k is less than jk. We
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k = 3

jk = 3

i jk+1 = 3 ≥ k

i jk = 2 < k

Figure 8.2: Illustration of the proof.

must therefore have that i jk < k. On the other hand, if there were no dot on po-
sition (i jk+1, k), we would have that the number of empty squares in column k
is higher than jk. This is illustrated in Figure 8.2, which shows a (4, 4) dual par-
tition set. The first partition is given by (i1, i2, i3, i4) = (1, 2, 2, 3) (counting the
black dots row by row) and the second by ( j1, j2, j3, j4) = (0, 1, 3, 4) (counting
the empty squares column by column). One indeed verifies that i jk < k and
i jk+1 ≥ k, for k ∈ {2, 3}. As the row (il + l)l∈N0 is (strictly) increasing, the
above implies that il + l 6= jk + k, with l ∈ N[1, m1]. As this holds for any k sat-
isfying the mentioned constraints, we have that il + l 6= jk + k for l ∈ N[1, m1]
and k such that jk 6= 0 ∧ jk 6= m1. We still need to consider the 2 special cases.
When jk = 0 this implies that i1 ≥ k or equivalently i1 + 1 ≥ jk + k + 1. When
jk = m1 this implies that im1 < k or equivalently im1 + m1 < jk + k. In both
special cases for jk we again obtain that il + l 6= jk + k, ∀ l ∈ N[1, m1]. As the
total number of integers is given by m1 + m2 and all integers are different and
contained in the set N[1, m1 + m2], we obtain the desired result.

Corollary – 8.3.4: For any two dice of a standard duplet it holds that their
corresponding triangulated dice form a dual partition set.

The above theorem shows a nice property of “step triangles” (triangles con-
structed using squares of equal size). Suppose we have a set of n rectangles of
height 1 and each of different length, with the length an integer smaller or equal
to n. Take any m ≤ n rectangles out of this set and order them in increasing or-
der of length. Put these rectangles one beneath the other, so that the left-hand
side of each rectangle is located one position more to the left than its prede-
cessor (if there is one) and such that a rectangle located below another has a
higher length. The remaining n − m rectangles can now be used, in a unique
way, to construct a “step triangle” with surface n(n + 1)/2. Again order the
remaining rectangles in increasing order of length and stack them on top of the
m rectangles, from left to right (starting at the appropriate position). As is so
often the case, this is best explained using an illustration, see Figure 8.3. In the
figure, we see two examples, each with 8 rectangles. In the first example (resp.
second example), 3 (resp. 4) rectangles, of length 2, 5 and 7 (resp. 1, 4, 5 and
7) were chosen. Note that the fact that this construction always works follows
directly from Theorem 8.3.3. Also note that one can try this at home after uti-
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lizing scissors to make the rectangles out of paper. Be sure not to cut yourself
(on the paper or the scissors).

Figure 8.3: Constructing triangles with rectangles.

8.4 Partitioning standard n-triplets
The proof of the result in this section makes use of the well-known values
Q(n, k), which are expressable using the function p defined in Definition 1.4.6.

Proposition – 8.4.1: The number of partitions of n into exactly k distinct
parts, denoted as Q(n, k), is given by

Q(n, k) = p(n − k(k + 1)/2, n, n− k(k + 1)/2) . (8.4)

Proof:
For n < k(k + 1)/2 the proof is trivial. Suppose now that n ≥ k(k + 1)/2 and
let π = (i1, i2, . . . , ik) be a partition of n− k(k + 1)/2 into at most k parts (i j = 0
is therefore allowed). The partition π ′ = (1 + i1, 2 + i2, . . . , k + ik) is then a
partition of n into exactly k (non-negative) distinct parts. It is now obvious that
there is a one-to-one correspondence between partitions of type π and those of
type π ′, which proves (8.4).

When going from two dice to three dice, counting the number of standard
collections with equal number of faces that have a given street number gets a
lot more complicated. Already for the case of two dice, the number of stan-
dard n-duplets having a given street number is determined using a generating
function for partitions, so it is not surprising that in the case of three dice it
becomes difficult to make general statements about the number of standard
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n-triplets having a given street number. We can, however, state some exact re-
sults for street numbers that are high enough. Note that for m = 3, M is given
by n(3n + 1)/2.

Proposition – 8.4.2: The number ν(s) of standard n-triplets with a given
street number s ∈ N[n2 − bn/2c, n2] is given by

ν(s) = Q(M − s, n)

(

(

2n
n

)

− Q(M − s, n)− 2
n2−s−1

∑
i=0

p(i)
)

, (8.5)

where p(i) and Q(i, j), are defined in Definition 1.4.1, resp. 8.4.1.

Proof:
The maximal street number, n2 is obtained when one of the dice contains the set
of numbers N[1, n] or N[2n + 1, 3n]. The number of standard n-triplets with one
dice holding the numbers N[1, n] is given by (2n

n )/2. The same holds for those
having one dice with the numbers N[2n + 1, 3n]. There is one standard n-triplet
that belongs to both types of the above triplets, namely the one consisting of
the dice N[1, n], N[n + 1, 2n] and N[2n + 1, 3n]. The total number of standard
n-triplets with street number n2 is thus given by (2n

n ) − 1. As for s = n2 we
have that M − s = n(n + 1)/2, (8.5) is already proven for s = n2.

We will now obtain the other results. First note that if the sum of the ele-
ments of one dice of a standard n-triplet equals M − s, with s ∈ N[n2 − bn/2c],
then the sum of the elements of any other dice of the standard n-triplet is
strictly greater than M − s. Indeed, suppose the sums of the 3 dice are resp.
s1, s2, s3 and assume s2 ≤ s1 = M − s. As s1 + s2 + s3 = 3M, it then holds
that s3 ≥ M + 2s ≥ M + 2n2 − n = n(7n − 1)/2 > n(5n + 1)/2, which is
impossible as the maximum sum on a dice is n(5n + 1)/2.

As was introduced in Proposition 8.4.1, the number of partitions of M − s
into exactly n distinct parts is given by Q(M − s, n). The number of n-triplets
for which the sum of the elements of a dice equals M − s is then given by
Q(M − s, n)C2

2n/2. For these triplets, the street number is already at least s.
The number of these triplets for which the street number is strictly greater than
s is given by Q(M − s, n)∑n2−s−1

i=0 p(i). Indeed, this is the sum of the number of
partitions of M + n2 − i into exactly n distinct parts, for all i ∈ N[0, n2 − s − 1],
multiplied by the number of partitions of M − s into exactly n distinct parts.
As follows from the previous paragraph, we have herewith counted all such
standard n-triplets.

A similar reasoning can be used to obtain the number of n-triplets with
street number s ∈ N[n2 − bn/2c, n2] for which the highest sum of the elements
of a dice equals M + s. This is also given by Q(M − s, n)(Q(M − s, n)Cn

2n/2 −
∑n2−s−1

i=0 p(i)).
When we sum both types of n-triplets, we have counted the n-triplets which

have a highest sum of M + s and a lowest sum of M− s twice. There are exactly
Q(M − s, n)2 such triplets.
Combining the above results we obtain (8.5).
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The condition s ≥ n2 − bn/2c is essential in the above proposition, because
when we do not impose this condition, the integers on a dice of a standard n-
triplet for which the sum equals M + s aren’t necessarily all different from the
integers on a dice of a standard n-triplet for which the sum equals M − s. It is
however very difficult to obtain a closed form for the number of triplets that
are counted more than once when the condition 2(n2 − s) ≤ n is not imposed.

We end this chapter with three tables that list (for n = 5, n = 6 and n = 7),
for each street number, the number of standard n-triplets with that specific
street number (these are given in the column named UD). Moreover, the num-
ber of these triplets that satisfy TM-transitivity, resp. TP-transitivity, resp. cycle-
transitivity w.r.t. the upper bound function UPD(α, β, γ) = α + γ −αγ, and
also the number of cyclic triplets among these (i.e. those not satisfying weak
stochastic transitivity) are listed. These numbers can be found in the columns
named UM, resp. UP, resp. UPD, resp. ¬Uws. Note that the result from Corol-
lary 8.1.7 is represented by the occurrences of 0 in the columns named UM.
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street nr. UD UM UP UPD ¬Uws

0 305 0 305 305 305
1 1891 1164 1891 1891 727
2 3640 0 3640 3640 434
3 5346 2919 5346 5346 178
4 6723 0 6721 6723 56
5 8018 3843 8010 8018 16
6 8773 0 8759 8773 8
7 9468 3775 9429 9466 8
8 9582 0 9527 9582 0
9 9671 3444 9556 9671 0

10 9237 0 9037 9236 0
11 8836 2551 8498 8828 0
12 8034 0 7674 8031 0
13 7329 2044 6838 7328 0
14 6247 0 5751 6247 0
15 5520 1579 4967 5520 0
16 4448 0 3875 4448 0
17 3639 1028 3124 3639 0
18 2743 0 2275 2743 0
19 2193 520 1801 2193 0
20 1591 0 1255 1591 0
21 1176 330 987 1176 0
22 724 0 587 724 0
23 492 140 415 492 0
24 249 0 193 249 0
25 251 251 251 251 0

total 126126 23588 120712 126111 1732

Table 8.1: Standard 5-triplets partitioned according to the street number.
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street nr. UD UM UP UPD ¬Uws

0 4331 2421 4331 4331 1910
1 25287 0 25287 25287 4342
2 50237 24693 50237 50237 2616
3 73384 0 73383 73384 1091
4 95614 44344 95606 95611 414
5 114269 0 114255 114267 222
6 132042 51582 132032 132042 84
7 144640 0 144617 144640 24
8 156303 54425 156287 156303 2
9 162749 0 162702 162746 0
10 167822 47880 167709 167820 0
11 167433 0 167108 167433 0
12 167180 46128 166812 167174 0
13 160600 0 159696 160598 0
14 155077 35272 153689 155070 0
15 145046 0 143225 145043 0
16 135878 30820 133347 135878 0
17 122813 0 119610 122809 0
18 112547 22237 108318 112542 0
19 98715 0 94370 98697 0
20 87840 17584 82728 87832 0
21 74955 0 70190 74952 0
22 64411 11193 59249 64410 0
23 52876 0 47937 52876 0
24 45103 10112 40355 45103 0
25 35141 0 30827 35141 0
26 28619 5270 24752 28619 0
27 21751 0 18537 21751 0
28 17075 3562 14307 17075 0
29 12176 0 10219 12176 0
30 9719 1828 7929 9719 0
31 6275 0 5399 6275 0
32 4529 1176 3796 4529 0
33 2739 0 2236 2739 0
34 1836 504 1542 1836 0
35 921 0 711 921 0
36 923 923 923 923 0

total 2858856 411954 2794258 2858789 10705

Table 8.2: Standard 6-triplets partitioned according to the street number.
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street nr. UD UM UP UPD ¬Uws

0 63261 0 63261 63261 63261
1 379871 172192 379871 379871 207679
2 752219 0 752219 752219 190296
3 1115120 473938 1115120 1115120 117316
4 1456742 0 1456742 1456742 60992
5 1780217 688625 1780213 1780217 30437
6 2070447 0 2070441 2070447 14593
7 2335868 796350 2335847 2335868 6847
8 2558392 0 2558364 2558392 3170
9 2752446 820378 2752366 2752442 1585

10 2898796 0 2898666 2898791 818
11 3015103 792093 3014782 3015086 413
12 3082397 0 3081958 3082379 152
13 3122328 734360 3121458 3122316 76
14 3113813 0 3112692 3113807 42
15 3083208 645895 3081186 3083199 28
16 3009580 0 3007050 3009580 14
17 2920195 565538 2915237 2920190 14
18 2794201 0 2787342 2794177 0
19 2660664 473966 2650595 2660649 0
20 2497158 0 2483939 2497144 0
21 2335675 393498 2316189 2335653 0
22 2152098 0 2126468 2152088 0
23 1976970 313856 1943122 1976956 0
24 1788753 0 1755023 1788742 0
25 1615145 254012 1574322 1615138 0
26 1433190 0 1385980 1433181 0
27 1271341 185401 1219902 1271325 0
28 1107985 0 1053837 1107970 0
29 964790 142666 912484 964756 0
30 823658 0 769150 823640 0
31 703905 100080 651048 703897 0
32 586630 0 537929 586627 0
33 491164 72116 446735 491163 0
34 400686 0 358794 400686 0
35 328692 51747 292647 328692 0
36 260290 0 227930 260290 0
37 208981 34830 182373 208981 0
38 159417 0 137344 159417 0
39 124931 18648 107200 124931 0
40 92923 0 78573 92923 0
41 70258 12782 59714 70258 0
42 50528 0 41845 50528 0
43 37265 6608 31763 37265 0
44 23818 0 20351 23818 0
45 17066 4284 14193 17066 0
46 10263 0 8269 10263 0
47 6852 1848 5730 6852 0
48 3429 0 2637 3429 0
49 3431 3431 3431 3431 0

total 66512160 7759142 65684332 66511863 697733

Table 8.3: Standard 7-triplets partitioned according to the street number.
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Not everything that counts can be counted,
and not everything that can be counted counts.

— ALBERT EINSTEIN
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Conclusion
This work consists of four related parts, divided into eight chapters. A first

part introduces the framework of cycle-transitivity, developed by De Baets et
al. It is shown that this framework is ideally suited for describing and compar-
ing forms of transitivity of probabilistic relations. Not only does it encompass
most already known concepts of transitivity, it is also ideally suited to describe
new types of transitivity that are encountered in this work (such as isostochas-
tic transitivity and dice-transitivity). The author made many non-trivial and
sometimes vital contributions to the development of this framework.

A second part consists of the development and study of a new method to
compare random variables. This method, which bears the name generalized
dice model, was developed by De Meyer et al. and De Schuymer et al., and
can be seen as a graded alternative to the well-known concept of first degree
stochastic dominance.

A third part involves the determination of the optimal strategies of three
game variants that are closely related to the developed comparison scheme.
The definitions of these variants differ from each other solely by the copula
that is used to define the payoff matrix. It turns out however that the charac-
terization of the optimal strategies, done by De Schuymer et al., is completely
different for each variant.

A last part includes the study of some combinatorial problems that orig-
inated from the investigation of the transitivity of probabilistic relations ob-
tained by utilizing the developed method to compare random variables. The
study, done by De Schuymer et al., includes the introduction of some new and
interesting concepts in partition theory and combinatorics.

A more thorough discussion, in which each section of this work is taken
into account, can be found in the overview at the beginning of this manuscript.

Although this work is oriented towards a mathematical audience, the in-
troduced concepts are immediately applicable in practical situations. Firstly,
the framework of cycle-transitivity provides an easy means to represent and
compare obtained probabilistic relations. Secondly, the generalized dice model
delivers a useful alternative to the concept of stochastic dominance for com-
paring random variables. Thirdly, the considered dice games can be viewed
in an economical context in which competitors have the same resources and
alternatives, and must choose how to distribute these resources over their al-
ternatives.

Finally, it must be noted that this work still leaves opportunities for fu-
ture research. As immediate candidates we see, firstly the investigation of the
transitivity of generalized dice models in which the random variables are pair-
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wisely coupled by a different copula. Secondly, the characterization of the tran-
sitivity of higher-dimensional dice models, starting with dimension 4. Thirdly,
the study of the applicability of the introduced comparison schemes in areas
such as market efficiency, portfolio selection, risk estimation, capital budget-
ing, discounted cash flow analysis, etc.
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Samenvatting
Het Vergelijken van Toevalsveranderlijken

vanuit een Speltheoretisch Perspectief

Het vergelijken van toevalsveranderlijken met behulp van een probabilis-
tische relatie is het centrale thema in dit werk. De vergelijkingsmethode die
doorheen dit werk wordt gebruikt, wordt in Hoofdstuk 3 ingevoerd. Essen-
tieel voor de methode is de probabiliteit dat een zekere toevalsveranderlijke
een grotere waarde aanneemt dan een andere toevalsveranderlijke. In spelthe-
oretische context (wanneer de toevalsveranderlijken met spelers worden geas-
socieerd), kan deze probabiliteit ook gedefinieerd worden als de kans dat een
speler wint van een andere speler. De toevalsveranderlijken worden dus ver-
geleken vanuit een speltheoretisch perspectief. Meer nog, het is heel natuurlijk
om de elementen van de probabilistische relatie, die verkregen worden door
deze vergelijkingsmethode te gebruiken, te transformeren naar de elementen
van een opbrengstmatrix waarmee de spellen die in Hoofdstukken 5 en 7 wor-
den behandeld, geassocieerd worden.

In Hoofdstuk 1 worden enkele basisconcepten ingevoerd die gebruikt zul-
len worden in de daarop volgende hoofdstukken. In de eerste sectie worden
de relationele concepten en de eraan verwante onderwerpen die in dit werk
aan bod zullen komen, ingevoerd. De tweede sectie introduceert distributie-
functies en geeft hun verband met copula’s, daarnaast wordt ook nog een voor
dit werk belangrijke opmerking in verband met toevalsvectoren vermeld. In
de derde sectie worden dan de speltheoretische concepten ingevoerd die in
Hoofdstukken 5 en 7 van belang zullen zijn. De laatste sectie introduceert dan
enkele basisconcepten uit de partitietheorie die van toepassing zijn in Hoofd-
stukken 5, 7 en 8.

Hoofdstuk 2 introduceert het raamwerk van de cykeltransitiviteit, dat ide-
aal geschikt is voor het beschrijven en vergelijken van diverse vormen van
transitiviteit. Aangezien vele probabilistische relaties aan bod zullen komen
in dit werk, inclusief relaties die niet noodzakelijk transitief zijn in de strikte
zin (zoals dobbeltransitieve relaties), is er een middel nodig om deze relaties
op een uniforme wijze voor te stellen. Het kader van de cykeltransitiviteit is
hiervoor ideaal aangezien de transitiviteit van diverse types van probabilisti-
sche relaties in dit model voorgesteld kunnen worden. Cykeltransitiviteit is
een manier om een 3-dimensionale probabilistische relatie te beschrijven aan
de hand van de cyclische evaluatie van de gewichten van de corresponderen-
de gewogen graaf en ze is alomtegenwoordig in dit werk. In de eerste twee
secties wordt dit raamwerk ontwikkeld. Secties drie en vier beschouwen dan
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de cykeltransitieve representatie van de twee meest bekende types van transi-
tiviteit, met name de T-transitiviteit en de stochastische transitiviteit. Tijdens
deze discussie zullen nieuwe types transitiviteit, zoals partiële g-stochastische
transitiviteit en isostochastische transitiviteit aan bod komen. De laatste sectie
bespreekt in het kort een alternatieve representatie van probabilistische relaties
door gebruik te maken van de zogenaamde symmetrische opbrengstrelaties.

In Hoofdstuk 3 wordt het discrete dobbelsteenmodel ingevoerd en wordt
de daarbijhorende karakteristieke vorm van cykeltransitiviteit, dobbeltransi-
tiviteit genaamd, bepaald. Dit model kan gebruikt worden voor het paars-
gewijs vergelijken van lijsten van natuurlijke getallen en zo een lijst kan ook
aanzien worden als een dobbelsteen waarbij op elk vlak een element uit de
lijst geschreven is. Dit model zal met de dobbelsteenrepresentatie gebruikt
worden in Hoofdstuk 5 als het model waarin een interessante klasse van spel-
len, zogenaamde (n,σ) dobbelspellen, wordt gedefinieerd. Het is ook de ba-
sis van de algemene vergelijkingsmethode voor toevalsveranderlijken die zal
worden ontwikkeld in Hoofdstukken 4 en 6. De eerste twee secties introdu-
ceren het dobbelsteenmodel terwijl de derde sectie het belang van de zoge-
naamde standaardcollectie van lijsten aanduidt. In de vierde sectie wordt dan
bewezen dat dobbeltransitiviteit de karakteristieke transitiviteit is die door
een 3-dimensionaal dobbelsteenmodel wordt gegenereerd. In de vijfde sectie
wordt een zeer natuurlijke vraag omtrent de aard van dobbeltransitiviteit be-
antwoord en de relatie met de probabilistische som wordt duidelijk gemaakt.
Daarenboven wordt bewezen dat eender welke 3-dimensionale dobbeltran-
sitieve relatie met rationale elementen gegenereerd kan worden door een 3-
dimensionaal dobbelsteenmodel bestaande uit hoogstens zeven zogenaamde
blokken, wat impliceert dat het dobbelsteenmodel dat gekozen wordt om een
gegeven 3-dimensionale dobbeltransitieve relatie te genereren een veel een-
voudigere structuur kan hebben dan een willekeurig dobbelsteenmodel. De
transitiviteit van dobbelsteenmodellen met een hogere dimensie wordt onder-
zocht in de zesde sectie. Er wordt bewezen dat niet alle 4-dimensionale dob-
beltransitieve relaties met rationale elementen gegenereerd kunnen worden
door een 4-dimensionaal dobbelsteenmodel, wat impliceert dat dobbeltran-
sitiviteit niet langer de karakteristieke transitiviteit is van hogerdimensionale
dobbelsteenmodellen. Ondanks verschillende ondernomen pogingen om de
karakteristieke transitiviteit te vinden van 4-dimensionale dobbelsteenmodel-
len, zijn we hierin niet geslaagd. Er zal echter wel worden aangetoond dat alle
4-dimensionale TM-transitieve probabilistische relaties met rationale elemen-
ten gegenereerd kunnen worden door een 4-dimensionaal dobbelsteenmodel.

In Hoofdstuk 4 wordt de in het voorgaande hoofdstuk geı̈ntroduceerde me-
thode gegeneraliseerd om zo een mathematisch werkmiddel te bekomen voor
het paarsgewijs vergelijken van toevalsveranderlijken. De eerste sectie gene-
raliseert het dobbelsteenmodel. Afhankelijk van het feit dat discrete of con-
tinue toevalsveranderlijken worden vergeleken, worden deze modellen gege-
neraliseerde discrete dobbelsteenmodellen of gegeneraliseerde continue dob-
belsteenmodellen genoemd. Deze modellen genereren allen probabilistische
relaties en wanneer onafhankelijke toevalsveranderlijken worden vergeleken
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voldoen deze relaties allen ten minste aan de dobbeltransitiviteit. De nood-
zaak om paarsgewijs toevalsveranderlijken te vergelijken komt frequent voor
in het vakgebied van “decision making”. Deze nieuwe methode om onafhan-
kelijke toevalsveranderlijken paarsgewijs te vergelijken biedt een geschaald al-
ternatief voor het concept van stochastische dominantie, wat ook zeer populair
is in het zonet genoemde vakgebied, bijvoorbeeld in economische applicaties.
In Hoofdstuk 4 wordt de nadruk gelegd op het vergelijken van toevalsveran-
derlijken door ze als onafhankelijk te beschouwen. De vergelijkingsmethode
gebruik makend van een copula die verschilt van de TP-copula wordt pas be-
studeerd in Hoofdstuk 6. In de tweede sectie van Hoofdstuk 4 wordt bewezen
dat de karakteristieke transitiviteit van de gegeneraliseerde dobbelsteenmo-
dellen met onafhankelijke toevalsveranderlijken de dobbeltransitiviteit blijft.
Het overblijvende deel van dit hoofdstuk behandelt dan meer specifieke fa-
milies van toevalsveranderlijken. De nadruk wordt gelegd op de types van
cykeltransitiviteit van de relaties die door deze specifieke modellen gegene-
reerd kunnen worden. Nieuwe types van transitiviteit en interessante connec-
ties met het gebied van de copula’s worden onthuld. De derde sectie handelt
over de algemene klasse van dobbelsteenmodellen die bestaan uit onafhanke-
lijke toevalsveranderlijken waarvan de cumulatieve distributiefuncties wille-
keurige translaties van dezelfde cumulatieve distributiefunctie zijn. De vier-
de sectie bestudeert dan verschillende éénparametrische families van toevals-
veranderlijken en verschillende types transitiviteit, inclusief multiplicatieve
transitiviteit en specifieke vormen van isostochastische transitiviteit, worden
hierbij ontmoet. De vijfde sectie behandelt dobbelsteenmodellen bestaande
uit normaalgedistribueerde onafhankelijke toevalsveranderlijken waarbij zo-
wel de verwachtingswaarde als de variantie als vrije parameters worden be-
schouwd. Er wordt aangetoond dat gematigde stochastische transitiviteit de
karakteristieke transitiviteit is van zulke 3-dimensionale modellen. In de laat-
ste sectie worden dobbelsteenmodellen bestaande uit uniform verdeelde onaf-
hankelijke toevalsveranderlijken met overlappende dragers behandeld en de
bijhorende karakteristieke transitiviteit voor zulke 3-dimensionale modellen
wordt bepaald. Dit blijkt een type van g-stochastische transitiviteit te zijn.

Hoofdstuk 5 is gewijd aan het achterhalen van de optimale strategieën van
een klasse van spellen die nauw verband houdt met het dobbelsteenmodel dat
in Hoofdstuk 3 werd geı̈ntroduceerd. De beschouwde spellen zijn symmetri-
sche matrixspellen gespeeld door twee spelers die beschikken over een col-
lectie van dobbelstenen met een vast aantal vlakken en met op elk vlak een
strikt positief geheel getal zodanig dat deze getallen sommeren tot een vastge-
legde som. De spellen die in Hoofdstuk 7 zullen worden behandeld houden
nauw verband met deze die in Hoofdstuk 5 worden behandeld. In hun sta-
tistische interpretatie verschillen ze enkel door de gebruikte copula voor het
bepalen van de opbrengstmatrix. Hoofdstuk 5 beschouwt de spellen waarbij
de TP-copula wordt gebruikt. Het vinden van de optimale strategieën voor
deze spelvariant houdt daarom nauw verband met het vergelijken van onaf-
hankelijke uniform verdeelde toevalsveranderlijken. In de eerste drie secties
van Hoofdstuk 5 wordt een volledige beschrijving van de beschouwde spelva-
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riant gegeven. In de vierde sectie worden dan de antwoorden op de volgende
vragen met betrekking tot het karakter van de optimale strategieën geformu-
leerd: welke (n,σ) dobbelspellen bezitten optimale strategieën, hoe zien deze
optimale strategieën eruit en met hoeveel zijn ze ? In de vijfde sectie worden
de resultaten uit de voorgaande sectie bewezen.

In Hoofdstuk 6 wordt de methode voor het paarsgewijs vergelijken van toe-
valsveranderlijken, die in Hoofdstuk 4 werd geı̈ntroduceerd, toegepast door
de toevalsveranderlijken paarsgewijs te koppelen met een van de TP-copula
verschillende copula. De nadruk wordt gelegd op de twee extreme copu-
la’s. In de eerste sectie wordt een alternatieve methode, die gebruik maakt
van de zogenaamde diagonaalformule, voor het bekomen van de probabilisti-
sche relatie gegenereerd door een dobbelsteenmodel geı̈ntroduceerd. Er wordt
ook een equivalente representatie gebruik makend van geordende lijsten beko-
men voor dobbelsteenmodellen bestaande uit discrete toevalsveranderlijken
die paarsgewijs gekoppeld worden door één van de extreme copula’s. Deze
representatiewijze vormt de link met de spelvarianten die in Hoofdstuk 7 wor-
den bestudeerd en deze geordende lijstrepresentatie wordt ook gebruikt in de
tweede sectie om de karakteristieke transitiviteit van deze modellen te bepalen.
Er wordt bewezen dat TL-transitiviteit (resp. partiële min-stochastische tran-
sitiviteit) de karakteristieke transitiviteit is van 3-dimensionale dobbelsteen-
modellen bestaande uit discrete toevalsveranderlijken die voor het vergelijken
paarsgewijs gekoppeld worden met de TM-copula (resp. TL-copula). Er wordt
ook bewezen dat voor geen van beide beschouwde dobbelsteenmodellen, de
specifieke transitiviteit behouden blijft als karakteristieke transitiviteit wan-
neer hogerdimensionale dobbelsteenmodellen worden beschouwd. De derde
sectie behandelt dan continue dobbelsteenmodellen waarin één van de twee
extreme copula’s wordt gebruikt voor het vergelijken van de toevalsverander-
lijken. Voor beide types dobbelsteenmodellen wordt een interessante manier
voor het bepalen van de probabilistische relatie via de grafieken van de mar-
ginale cumulatieve distributiefuncties (corresponderende met de beschouwde
toevalsveranderlijken) bekomen.

Hoofdstuk 7 behandelt twee spelvarianten die buiten de gebruikte copula
op identieke wijze gedefinieerd zijn als de spelvariant uit Hoofdstuk 5. De eer-
ste sectie geeft een kort overzicht van de drie spelvarianten die in dit werk aan
bod komen. De twee daaropvolgende secties behandelen dan de spelvariant
waarin de TM-copula wordt gebruikt. In de tweede sectie worden de resulta-
ten omtrent de optimale strategieën gebundeld en deze worden dan bewezen
in de derde sectie. Secties vier en vijf behandelen de spelvariant waarin de TL-
copula wordt gebruikt. De vierde sectie bundelt opnieuw de resultaten en de
laatste sectie bevat dan de bewijzen van deze resultaten. Het blijkt dat, alhoe-
wel de definities van de spelvarianten enkel verschillen in de gebruikte copula,
de karakterisatie van de optimale strategieën toch volledig verschilt voor elke
spelvariant.

In Hoofdstuk 8 worden standaard n-dupletten en standaard n-tripletten,
die bepaalde collecties van verzamelingen van strikt positieve getallen behel-
zen, gepartitioneerd door gebruik te maken van hun zogenaamd straatnum-
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mer, met als doel te bepalen hoeveel van die collecties een gegeven straat-
nummer hebben. De eerste sectie introduceert het straatnummer en toont het
verband met de opbrengstmatrix van de in Hoofdstuk 5 gedefinieerde spellen
aan. De tweede sectie bepaalt dan, voor een gegeven straatnummer, hoeveel
n-dupletten dit straatnummer hebben. Het blijkt dat hiervoor bepaalde con-
cepten uit de partitietheorie nodig zijn. De derde sectie introduceert dan de
zogenaamde duale partitieset, wat leidt tot een interessante methode om trap-
driehoeken te maken met behulp van rechthoeken. De vierde en tevens laatste
sectie behandelt dan het straatnummer van n-tripletten. Er wordt aangetoond
dat het zeer moeilijk wordt om algemene resultaten te geven betreffende het
aantal n-tripletten die een bepaald straatnummer hebben.
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Index
A–B

α 20
β 20

C
collection

of m dice 44
standard 45, 47, 137
standard n-duplet 137, 140

dual partition set 141
standard n-triplet 137, 144
standard duplet 48
standard quartet 48, 65
standard triplet 48

conjunctor 27
consistency 4
copula 3

absolutely continuous 12
algebraic product, TP 11, 117
co-, C∗ 30
compatible 12
dual, C̃ 29
Łukasiewicz, TL, W 11, 117
minimum operator, TM, M 11, 117
quasi- 3, 56
singular 12
survival, Ĉ 30

cycle 5, 8
cycle-transitivity 21

D
diagonal formula 103
dice 44

(discrete) ˜ model 44
higher dimensions 61

consisting of k blocks 58
triangulated 140

difference scale 6
distribution function 10

drastic product 3

E–F
evaluability hypothesis 8
Frank see t-norm
Fréchet-Hoeffding 11

G
g-graph 56
game

(n,σ), (n,σ)P 87
incremented partition 92
incremented/decrement 94
max-decrement position 93

(n,σ)L 117
pn 125

(n,σ)M 117
decrementable row 122
first decrement operation

on the same row 122
first increment operation

on the same row 122
incrementable row 122

game theory 12
antagonistic game 12
non-cooperative game 12
payoff 12
payoff matrix 13
situation 12

admissible 12
equilibrium 12
saddle point 12

strategy 12
equilibrium 12
mixed 13
optimal 13
pure 13

symmetric game 13
γ 20
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H–I
Hamacher 39
indifference 1
intensity of preference 6

J
joint distribution function 10
joint evaluation 6, 7

L
Lipschitz 3, 28
lower bound

dual ˜ function 23
Fréchet-Hoeffding 11

M
M see copula, minimum
model

(discrete) dice see dice
continuous diceL model 113
continuous diceM model 113
discrete diceL model 108
discrete diceM model 107
generalized continuous dice 70

Beta-distributions 78
exponential 75
exponential distributions 77
Gumbel distributions 76
Laplace distributions 79
normal distributions 80, 82
Pareto-distributions 78
uniform distributions 78, 83

generalized dice 69
shifted distributions 74

generalized discrete dice 70
geometric distributions 78

multidimensional 61
moderate growth 3
multiset 44

collective 44

N
N[a, b] 45
norm theory 7

P
partition theory 14

composition 15
decremented partition 92
Dedekind sum 15
Ferrers graph 15
Gaussian polynomial 17
generating function 16
multiplicity representation 14
(n,σ) partition 14
p(n) 14, 15
partition 14
Q(n, k) 143
restricted partition 16

positive ratio scale 6
preference 1, 4

fuzzy model 1
probabilistic model 1
reversal 7, 9
shifts 7

probabilistic
model 1
relation see relation
sum 55, 76

probability measure 11

R
random variable 11

dependent 103
independent 11, 70

random vector 12
ratio

bias 10
preference intensity 7

relation
fuzzy 5
indifference 46
ipsodual 1
preference 6
probabilistic 1, 5, 39, 45, 56
reciprocal 1
strict preference 46
symmetric payoff 39

S
Schweizer-Sklar 79
separate evaluation 6, 7
Sklar’s Theorem 11
stochastic dominance 70
street number 137
subset
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nondecreasing ˜ of R2 113
nonincreasing ˜ of R2 113

T
t-conorm 2, 38

Hamacher see Hamacher
Schweizer-Sklar see

Schweizer-Sklar
t-norm 2

algebraic product, TP 3, 11
drastic product 3
Frank family 3, 30
Łukasiewicz, TL 3, 11
minimum operator, TM 3, 11, 29
ordinal sum 30

TL, TM, TP see t-norm
transitivity 2, 4, 5

additive 7, 22
cycle- see cycle-transitivity
dice- 8, 52, 71
Frank, TF

λ - 30
fuzzy 27
g-stochastic 31
isostochastic 36, 76, 78
Łukasiewicz, TL- 31, 49, 109
min-, TM- 25, 31, 51, 63, 139
multiplicative 7, 25, 76, 78
product-, TP- 20, 31, 48, 50
stochastic 5

λ 32
moderate 32, 82
partial 35
partial min- 111
partial g- 35

strong 32
weak 5, 8, 32

T- 5, 27

U
upper bound

˜ function 22
equivalent ˜s 24
self-dual 24
self-dual polynomials 25
UA 22
UD, U′

D 52, 54, 56
UE, U′

E 25, 37
U f 27, 28
UF

λ 30
Ug 32–34
U s

g 36
Uh 35
UL, U′

L, U′′
L 31

Uλ 34
UM 25, 31
Ums 33, 54
Uµ 24
UP 31, 56
UPD 56
Uss, U′

ss 33, 34
Uws 34

Fréchet-Hoeffding 11
utility function 6

W
W see copula
want/should proposition 8
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